Updating search results...

Search Resources

30 Results

View
Selected filters:
  • dna
Bacteria Transformation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kimberly Anderson
Matthew Zelisko
Date Added:
09/18/2014
Bio-Engineering: Making and Testing Model Proteins
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as if they are biological engineers following the steps of the engineering design process to design and create protein models to replace the defective proteins in a child’s body. Jumping off from a basic understanding of DNA and its transcription and translation processes, students learn about the many different proteins types and what happens if protein mutations occur. Then they focus on structural, transport and defense proteins during three challenges posed by the R&D; bio-engineering hypothetical scenario. Using common classroom supplies such as paper, tape and craft sticks, student pairs design, sketch, build, test and improve their own protein models to meet specific functional requirements: to strengthen bones (collagen), to capture oxygen molecules (hemoglobin) and to capture bacteria (antibody). By designing and testing physical models to accomplish certain functional requirements, students come to understand the relationship between protein structure and function. They graph and analyze the class data, then share and compare results across all teams to determine which models were the most successful. Includes a quiz, three worksheets and a reference sheet.

Subject:
Agriculture & Natural Science
Biology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Beth Podoll
Lauren Sako
Date Added:
06/07/2018
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is the science that studies life, but what exactly is life? This may sound like a silly question with an obvious response, but it is not always easy to define life. For example, a branch of biology called virology studies viruses, which exhibit some of the characteristics of living entities but lack others. It turns out that although viruses can attack living organisms, cause diseases, and even reproduce, they do not meet the criteria that biologists use to define life. Consequently, virologists are not biologists, strictly speaking. Similarly, some biologists study the early molecular evolution that gave rise to life; since the events that preceded life are not biological events, these scientists are also excluded from biology in the strict sense of the term. From its earliest beginnings, biology has restled with these questions: What are the shared properties that make something “alive”? And once we know something is alive, how do we find meaningful levels of organization in its structure?

Subject:
Agriculture & Natural Science
Biology
Material Type:
Reading
Provider:
Lumen Learning
Date Added:
01/12/2021
DNA Fingerprinting
Rating
0.0 stars

The "Experiments in Biotechnology" video series is a production of NCCCS BioNetwork in partnership with Haywood and Western Piedmont Community Colleges and features demonstrations of 8 laboratory experiments.

Subject:
Allied health personnel
CTE
Material Type:
Lesson
Date Added:
09/11/2018
DNA Forensics and Color Pigments
Read the Fine Print
Educational Use
Rating
0.0 stars

Students perform DNA forensics using food coloring to enhance their understanding of DNA fingerprinting, restriction enzymes, genotyping and DNA gel electrophoresis. They place small drops of different food coloring ("water-based paint") on strips of filter paper and then place one paper strip end in water. As water travels along the paper strips, students observe the pigments that compose the paint decompose into their color components. This is an example of the chromatography concept applied to DNA forensics, with the pigments in the paint that define the color being analogous to DNA fragments of different lengths.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
DNA, Hot Pockets, & The Longest Word Ever: Crash Course Biology #11
Read the Fine Print
Educational Use
Rating
0.0 stars

The video resource "DNA, Hot Pockets, & The Longest Word Ever: Crash Course Biology #11" is included in the "Biology" course from the resources series of "Crash Course". Crash Course is a educational video series from John and Hank Green.

Subject:
Agriculture & Natural Science
Biology
Material Type:
Lesson
Date Added:
05/08/2018
DNA Microarray Methodology
Rating
0.0 stars

This animation demonstrates how DNA microarray experiments are performed. One common use of microarrays is to determine which genes are activated and which are repressed when two populations of cells are compared. Every gene is measured simultaneously. As an example, we'll compare what happens to yeast genes when cells are grown in aerobic versus anaerobic conditions.

Subject:
Allied health personnel
CTE
Material Type:
Lesson
Date Added:
09/11/2018
DNA Sequencing
Rating
0.0 stars

The "Experiments in Biotechnology" video series is a production of NCCCS BioNetwork in partnership with Haywood and Western Piedmont Community Colleges and features demonstrations of 8 laboratory experiments.

Subject:
Allied health personnel
CTE
Material Type:
Lesson
Date Added:
09/11/2018
DNA Structure and Replication: Crash Course Biology #10
Read the Fine Print
Educational Use
Rating
0.0 stars

The video resource "DNA Structure and Replication: Crash Course Biology #10" is included in the "Biology" course from the resources series of "Crash Course". Crash Course is a educational video series from John and Hank Green.

Subject:
Agriculture & Natural Science
Biology
Material Type:
Lesson
Date Added:
05/08/2018
Diabetes - The Essential Facts - What Role Does Exercise Play ? (24:17)
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This presentation talks about which role exercise plays in developing diabetes. We will describe what happens in the body when we exercise, and why these changes help us prevent and treat diabetes. In continuation of this we’ll talk about the interaction between insulin, glucose and muscle cells and how we through exercise, can change our health. Furthermore we’ll discuss how lifestyle can affect one’s future children in terms of developing diabetes later on.

Narrator: Richard Steed.

Subject:
Health and Medical Science
Material Type:
Lecture
Provider:
EIT
Author:
Associate Professor Dirk Lund Christensen
Associate Professor Signe Sørensen Torekov
MD Ida Donkin
MD Nicolai Wewer Albrechtsen
Professor Jens Juul Holst
Professor Juleen Zierath
Date Added:
01/07/2016
Don't Be a Square
Read the Fine Print
Educational Use
Rating
0.0 stars

After watching video clips from the Harry Potter and the Goblet of Fire movie, students explore the use of Punnett squares to predict genetic trait inheritance. The objective of this lesson is to articulate concepts related to genetics through direct immersive interaction based on the theme, The Science Behind Harry Potter. Students' interest is piqued by the use of popular culture in the classroom.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Engineering Nature: DNA Visualization and Manipulation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to genetic techniques such as DNA electrophoresis and imaging technologies used for molecular and DNA structure visualization. In the field of molecular biology and genetics, biomedical engineering plays an increasing role in the development of new medical treatments and discoveries. Engineering applications of nanotechnology such as lab-on-a-chip and deoxyribonucleic acid (DNA) microarrays are used to study the human genome and decode the complex interactions involved in genetic processes.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Engineering Out of Harry Situations: The Science Behind Harry Potter
Read the Fine Print
Educational Use
Rating
0.0 stars

Under the "The Science Behind Harry Potter" theme, a succession of diverse complex scientific topics are presented to students through direct immersive interaction. Student interest is piqued by the incorporation of popular culture into the classroom via a series of interactive, hands-on Harry Potter/movie-themed lessons and activities. They learn about the basics of acid/base chemistry (invisible ink), genetics and trait prediction (parseltongue trait in families), and force and projectile motion (motion of the thrown remembrall). In each lesson and activity, students are also made aware of the engineering connections to these fields of scientific study.

Subject:
Agriculture & Natural Science
Chemistry
Engineering
Genetics
Mathematics
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Frontiers in Biomedical Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course covers basic concepts of biomedical engineering and their connection with the spectrum of human activity. It serves as an introduction to the fundamental science and engineering on which biomedical engineering is based. Case studies of drugs and medical products illustrate the product development-product testing cycle, patent protection, and FDA approval. It is designed for science and non-science majors.

Subject:
Health and Medical Science
Material Type:
Full Course
Provider:
Yale University
Provider Set:
Open Yale Courses
Author:
Mark Saltzman
Date Added:
01/13/2021
Imaging DNA Structure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the latest imaging methods used to visualize molecular structures and the method of electrophoresis that is used to identify and compare genetic code (DNA). Students should already have basic knowledge of genetics, DNA (DNA structure, nucleotide bases), proteins and enzymes. The lesson begins with a discussion to motivate the need for imaging techniques and DNA analysis, which prepares students to participate in the associated two-part activity: 1) students each choose an imaging method to research (from a provided list of molecular imaging methods), 2) they research basic information about electrophoresis.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Inside the DNA
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct their own research to discover and understand the methods designed by engineers and used by scientists to analyze or validate the molecular structure of DNA, proteins and enzymes, as well as basic information about gel electrophoresis and DNA identification. In this computer-based activity, students investigate particular molecular imaging technologies, such as x-ray, atomic force microscopy, transmission electron microscopy, and create short PowerPoint presentations that address key points. The presentations include their own explanations of the difference between molecular imaging and gel electrophoresis.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Introduction to Genetic Engineering and Its Applications
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers apply their understanding of DNA to manipulate specific genes to produce desired traits, and how engineers have used this practice to address current problems facing humanity. They learn what genetic engineering means and examples of its applications, as well as moral and ethical problems related to its implementation. Students fill out a flow chart to list the methods to modify genes to create GMOs and example applications of bacteria, plant and animal GMOs.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kimberly Anderson
Matthew Zelisko
Date Added:
09/18/2014
The Meselson-Stahl Experiment
Rating
0.0 stars

This "The Meselson-Stahl Experiment" learning object is the from the Sumanas resource series. Sumanas offers a robust selection of content and services that are directed at enhancing the learning experience.

Subject:
Agriculture & Natural Science
Biology
Date Added:
11/14/2013