Updating search results...

Search Resources

38 Results

View
Selected filters:
  • Genetics
Allele A1 Manual
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This resource is the manual for "Allele A1" Software. AlleleA1 simulates evolution at a single locus in an ideal population of imaginary organisms. The user enters values for parameters controlling selection, mutation, migration, genetic drift, and inbreeding. As the simulation runs, the software plots a graph showing the frequency of allele A1 over time. The resource, "Allele A1 Manual (pdf)" within "Lesson 03 Population Genetics and the Evolution of Resistance - Elaboration" is a part of Unit 06 Population Genetics and the Evolution of Resistance included in Agriscience & Biotechnology, Ag Bio - Course 2.

Subject:
Agriculture
Agriculture & Natural Science
Crop science
Genetics
Material Type:
Reading
Provider:
University of Washington
Date Added:
04/17/2015
Bacteria Transformation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kimberly Anderson
Matthew Zelisko
Date Added:
09/18/2014
The Benefits of Biodiversity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students toss coins to determine what traits a set of mouse parents possess, such as fur color, body size, heat tolerance, and running speed. Then they use coin tossing to determine the traits a mouse pup born to these parents possesses. Then they compare these physical features to features that would be most adaptive in several different environmental conditions. Finally, students consider what would happen to the mouse offspring if those environmental conditions were to change: which mice would be most likely to survive and produce the next generation?

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
DNA Forensics and Color Pigments
Read the Fine Print
Educational Use
Rating
0.0 stars

Students perform DNA forensics using food coloring to enhance their understanding of DNA fingerprinting, restriction enzymes, genotyping and DNA gel electrophoresis. They place small drops of different food coloring ("water-based paint") on strips of filter paper and then place one paper strip end in water. As water travels along the paper strips, students observe the pigments that compose the paint decompose into their color components. This is an example of the chromatography concept applied to DNA forensics, with the pigments in the paint that define the color being analogous to DNA fragments of different lengths.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Don't Be a Square
Read the Fine Print
Educational Use
Rating
0.0 stars

After watching video clips from the Harry Potter and the Goblet of Fire movie, students explore the use of Punnett squares to predict genetic trait inheritance. The objective of this lesson is to articulate concepts related to genetics through direct immersive interaction based on the theme, The Science Behind Harry Potter. Students' interest is piqued by the use of popular culture in the classroom.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Engineering Nature: DNA Visualization and Manipulation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to genetic techniques such as DNA electrophoresis and imaging technologies used for molecular and DNA structure visualization. In the field of molecular biology and genetics, biomedical engineering plays an increasing role in the development of new medical treatments and discoveries. Engineering applications of nanotechnology such as lab-on-a-chip and deoxyribonucleic acid (DNA) microarrays are used to study the human genome and decode the complex interactions involved in genetic processes.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Engineering Out of Harry Situations: The Science Behind Harry Potter
Read the Fine Print
Educational Use
Rating
0.0 stars

Under the "The Science Behind Harry Potter" theme, a succession of diverse complex scientific topics are presented to students through direct immersive interaction. Student interest is piqued by the incorporation of popular culture into the classroom via a series of interactive, hands-on Harry Potter/movie-themed lessons and activities. They learn about the basics of acid/base chemistry (invisible ink), genetics and trait prediction (parseltongue trait in families), and force and projectile motion (motion of the thrown remembrall). In each lesson and activity, students are also made aware of the engineering connections to these fields of scientific study.

Subject:
Agriculture & Natural Science
Chemistry
Engineering
Genetics
Mathematics
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Evolving TCE Biodegraders
Read the Fine Print
Educational Use
Rating
0.0 stars

A hypothetical scenario is introduced in which the class is asked to apply their understanding of the forces that drive natural selection to prepare a proposal along with an environmental consulting company to help clean up an area near their school that is contaminated with trichloroethylene (TCE). Students use the Avida-ED software application to test hypotheses for evolving (engineering) a strain of bacteria that can biodegrade TCE, resulting in a non-hazardous clean-up solution. Conduct this design challenge activity after completion of the introduction to digital evolution activity, Studying Evolution with Digital Organisms.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Lark
Louise Mead
Robert Pennock
Wendy Johnson
Date Added:
09/18/2014
Genetic Engineering Will Change Everything Forever - CRISPR
Read the Fine Print
Educational Use
Rating
0.0 stars

Designer babies, the end of diseases, genetically modified humans that never age. Outrageous things that used to be science fiction are suddenly becoming reality. The only thing we know for sure is that things will change irreversibly. The video "Genetic Engineering Will Change Everything Forever - CRISPR" is a resource included in the Genetics and genomics topic made available from the Kurzgesagt open educational resource series.

Subject:
Agriculture & Natural Science
Genetics
Material Type:
Lesson
Date Added:
02/12/2019
Genetic Engineering and Diseases - Gene Drive & Malaria
Read the Fine Print
Educational Use
Rating
0.0 stars

We have the choice to attack one of our oldest enemies with genetic engineering. But should we do it? The video "Genetic Engineering and Diseases - Gene Drive & Malaria" is a resource included in the Genetics and genomics topic made available from the Kurzgesagt open educational resource series.

Subject:
Agriculture & Natural Science
Genetics
Material Type:
Lesson
Date Added:
02/12/2019
Imaging DNA Structure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the latest imaging methods used to visualize molecular structures and the method of electrophoresis that is used to identify and compare genetic code (DNA). Students should already have basic knowledge of genetics, DNA (DNA structure, nucleotide bases), proteins and enzymes. The lesson begins with a discussion to motivate the need for imaging techniques and DNA analysis, which prepares students to participate in the associated two-part activity: 1) students each choose an imaging method to research (from a provided list of molecular imaging methods), 2) they research basic information about electrophoresis.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Inside the DNA
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct their own research to discover and understand the methods designed by engineers and used by scientists to analyze or validate the molecular structure of DNA, proteins and enzymes, as well as basic information about gel electrophoresis and DNA identification. In this computer-based activity, students investigate particular molecular imaging technologies, such as x-ray, atomic force microscopy, transmission electron microscopy, and create short PowerPoint presentations that address key points. The presentations include their own explanations of the difference between molecular imaging and gel electrophoresis.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Introduction to Evolutionary Computation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concepts of evolution by natural selection and digital evolution software. They learn about the field of evolutionary computation, which applies the principles of natural selection to solve engineering design problems. They learn the similarities and differences between natural selection and the engineering design process.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Wendy Johnson
Date Added:
09/18/2014
Introduction to Genetic Engineering and Its Applications
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers apply their understanding of DNA to manipulate specific genes to produce desired traits, and how engineers have used this practice to address current problems facing humanity. They learn what genetic engineering means and examples of its applications, as well as moral and ethical problems related to its implementation. Students fill out a flow chart to list the methods to modify genes to create GMOs and example applications of bacteria, plant and animal GMOs.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kimberly Anderson
Matthew Zelisko
Date Added:
09/18/2014
Let's Make Silly Putty
Read the Fine Print
Educational Use
Rating
0.0 stars

Students make two different formulations of imitation Silly Putty with varying degrees of cross-linking. They witness how changes in the degree of cross-linking influence the putty properties.

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Cherelle M. Bishop
Jeramy Jasmann
Kate McDonnell
Melissa M. Reynolds
Michael A. de Miranda
Date Added:
09/18/2014
Mice Rule! (Or Not)
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the relationships between genetics, biodiversity, and evolution through a simple activity involving hypothetical wild mouse populations. First, students toss coins to determine what traits a set of mouse parents possesses, such as fur color, body size, heat tolerance, and running speed. Next they use coin tossing to determine the traits a mouse pup born to these parents possesses. These physical features are then compared to features that would be most adaptive in several different environmental conditions. Finally, students consider what would happen to the mouse offspring if those environmental conditions were to change: which mice would be most likely to survive and produce the next generation?

Subject:
Agriculture & Natural Science
Engineering
Genetics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
PhET: Stretching DNA
Rating
0.0 stars

Explore stretching just a single strand of DNA using optical tweezers or fluid flow. Experiment with the forces involved and measure the relationship between the stretched DNA length and the force required to keep it stretched. Is DNA more like a rope or like a spring?

Subject:
Agriculture & Natural Science
Biochemistry
Biology
Chemistry
Genetics
Physical Science
Physics
Date Added:
02/01/2011