Updating search results...

Search Resources

783 Results

View
Selected filters:
  • Activity/Lab
Renewable Energy Living Lab: Exploring Regional and Local Resources
Read the Fine Print
Educational Use
Rating
0.0 stars

Students become familiar with the online Renewable Energy Living Lab interface and access its real-world solar energy data to evaluate the potential for solar generation in various U.S. locations. They become familiar with where the most common sources of renewable energy are distributed across the U.S. Through this activity, students and teachers gain familiarity with the living lab's GIS graphic interface and query functions, and are exposed to the available data in renewable energy databases, learning how to query to find specific information for specific purposes. The activity is intended as a "training" activity prior to conducting activities such as The Bright Idea activity, which includes a definitive and extensive end product (a feasibility plan) for students to create.

Subject:
Agriculture & Natural Science
Ecology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Renewable Energy Living Lab: The Bright Idea
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use real-world data to evaluate the feasibility of solar energy and other renewable energy sources in different U.S. locations. Working in small groups, students act as engineers evaluating the suitability of installing solar panels at four company locations. They access data from the online Renewable Energy Living Lab from which they make calculations and analyze how successful solar energy generation would be, as well as the potential for other power sources at those locations. Then they summarize their results, analysis and recommendations in the form of feasibility plans prepared for a CEO.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Repairing Broken Bones
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how biomedical engineers aid doctors in repairing severely broken bones. They learn about using pins, plates, rods and screws to repair fractures. They do this by designing, creating and testing their own prototype devices to repair broken turkey bones.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Todd Curtis
Date Added:
09/18/2014
Reproducibility Immersive Course
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Various fields in the natural and social sciences face a ‘crisis of confidence’. Broadly, this crisis amounts to a pervasiveness of non-reproducible results in the published literature. For example, in the field of biomedicine, Amgen published findings that out of 53 landmark published results of pre-clinical studies, only 11% could be replicated successfully. This crisis is not confined to biomedicine. Areas that have recently received attention for non-reproducibility include biomedicine, economics, political science, psychology, as well as philosophy. Some scholars anticipate the expansion of this crisis to other disciplines.This course explores the state of reproducibility. After giving a brief historical perspective, case studies from different disciplines (biomedicine, psychology, and philosophy) are examined to understand the issues concretely. Subsequently, problems that lead to non-reproducibility are discussed as well as possible solutions and paths forward.

Subject:
Computer Science
Material Type:
Activity/Lab
Provider:
New York University
Author:
Vicky Steeves
Date Added:
06/01/2018
Reproducibility, Preservation, and Access to Research with ReproZip and ReproServer
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

The adoption of reproducibility remains low, despite incentives becoming increasingly common in different domains, conferences, and journals. The truth is, reproducibility is technically difficult to achieve due to the complexities of computational environments.To address these technical challenges, we created ReproZip, an open-source tool that packs research along with all the necessary information to reproduce it, including data files, software, OS version, and environment variables. Everything is then bundled into an .rpz file, which users can use to reproduce the work with ReproUnzip and an unpacker (Docker, Vagrant, and Singularity). The .rpz file is general and contains rich metadata: more unpackers can be added as needed, better guaranteeing long-term preservation.However, installing the unpackers can still be burdensome for secondary users of ReproZip bundles. In this paper, we will discuss how ReproZip and our new tool ReproServer can be used together to facilitate access to well-preserved, reproducible work. ReproServer is a cloud application that allows users to upload or provide a link to a ReproZip bundle, and then interact with/reproduce the contents from the comfort of their browser. Users are then provided a stable link to the unpacked work on ReproServer they can share with reviewers or colleagues.

Subject:
Computer Science
Material Type:
Activity/Lab
Provider:
New York University
Author:
Fernando Chirigati
Rémi Rampin
Vicky Steeves
Date Added:
05/31/2019
Reproducibility & R for Data Science for Social Impact: Hands-on best practices for reproducible research
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Get some experience with some tools that help us work towards reproducibility with R, especially RMarkdown, knitr, and packrat. Goals for today: You will be able to bundle and unbundle things with packrat; You will be able to create RMarkdown files and knit them into PDF or HTML; You will know how to troubleshoot the inevitable errors you’ll get your first time doing these things.

Subject:
Computer Science
Material Type:
Activity/Lab
Provider:
New York University
Author:
Vicky Steeves
Date Added:
10/31/2019
Research Project Management Using the Open Science Framework
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

An introduction to managing, annotating, organizing, archiving, and publishing research data using the Open Science Framework.

Subject:
Computer Science
Material Type:
Activity/Lab
Provider:
New York University
Author:
Nick Wolf
Vicky Steeves
Date Added:
01/06/2020
Reverse Engineering Project
Read the Fine Print
Educational Use
Rating
0.0 stars

Student pairs reverse engineer objects of their choice, learning what it takes to be an engineer. Groups each make a proposal, create a team work contract, use tools to disassemble a device, and sketch and document their full understanding of how it works. They compile what they learned into a manual and write-up that summarizes the object's purpose, bill of materials and operation procedure with orthographic and isometric sketches. Then they apply some of the steps of the engineering design process to come up with ideas for how the product or device could be improved for the benefit of the end user, manufacturer and/or environment. They describe and sketch their ideas for re-imagined designs (no prototyping or testing is done). To conclude, teams compile full reports and then recap their reverse engineering projects and investigation discoveries in brief class presentations. A PowerPoint(TM) presentation, written report and oral presentation rubrics, and peer evaluation form are provided.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alexa Garfinkel
Date Added:
10/14/2015
R for Social Scientists
Unrestricted Use
CC BY
Rating
0.0 stars

From Data Carpentry: Data Carpentry’s aim is to teach researchers basic concepts, skills, and tools for working with data so that they can get more done in less time, and with less pain. The lessons below were designed for those interested in working with social sciences data in R.This is an introduction to R designed for participants with no programming experience. These lessons can be taught in a day (~ 6 hours). They start with some basic information about R syntax, the RStudio interface, and move through how to import CSV files, the structure of data frames, how to deal with factors, how to add/remove rows and columns, how to calculate summary statistics from a data frame, and a brief introduction to plotting.

Subject:
Social and Behavioral Science
Material Type:
Activity/Lab
Provider:
New York University
Author:
Vicky Steeves
Date Added:
01/15/2020
Riding the Radio Waves
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this lesson students learn how AM radios work through basic concepts about waves and magnetic fields. Waves are first introduced by establishing the difference between transverse and longitudinal waves, as well as identifying the amplitude and frequency of a given waveform. Students then learn general concepts about magnetic fields, leading into how radio waves are created and transmitted. Several demonstrations can be performed in order to help students better understand these concepts. The goal of this lesson is for students to understand how the AM radios built during the associated activity function.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Spataro
Date Added:
09/18/2014
Ring around the Rosie
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the concept of angular momentum and its correlation to mass, velocity and radius. They experiment with rotation and an object's mass distribution. In an associated literacy activity, students use basic methods of comparative mythology to consider why spinning and weaving are common motifs in creation myths and folktales.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
09/18/2014
River Flow Rate
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build on their understanding and feel for flow rates, as gained from the associated Faucet Flow Rate activity, to estimate the flow rate of a local river. The objective is to be able to relate laboratory experiment results to the environment. They use the U.S. Geological Survey website (http://waterdata.usgs.gov/nwis/rt) to determine the actual flow rate data for their river, and compare their estimates to the actual flow rate. For this activity to be successful, choose a nearby river and take a field trip or show a video so students gain a visual feel for the flow of the nearby river.

Subject:
Agriculture & Natural Science
Ecology
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bobby Rinehart
Karen Johnson
Mike Mooney
Date Added:
09/18/2014
Robot Locomotion Mini Hackathon
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will be able to:

Describe the basics of Robots.

Describe basic hardware and software of the LEGO Robot.

Write sequential code for LEGO Robot to move.

Subject:
Computer Science
Material Type:
Activity/Lab
Provider:
CUNY Academic Works
Provider Set:
Borough of Manhattan Community College
Author:
Mohammad Azhar
Date Added:
05/14/2019
A Robotic Hand with a Gentle Touch
Read the Fine Print
Educational Use
Rating
0.0 stars

Students groups act as NASA/GM engineers challenged to design, build and test robotic hands, which are tactile feedback systems made from cloth gloves and force sensor circuits. Student groups construct force sensor circuits using electric components and FlexiForce sensors to which resistance changes based on the applied force. They conduct experiments to find the mathematical relationship between the force applied to the sensor and the output voltages of the circuit. They take several measurements force vs. resistance, force vs. voltage and use the data to find the best fit curve models for the sensor. Different weights applied to the sensor are used as a scalable force. Students use traditional methods and current technology (calculators) to plot the collected data and define the curve equations. Students test their gloves and use a line of best fit to determine the minimum force required to crack an egg held between the index finger and thumb. A PowerPoint(TM) file and many student handouts are included.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Luis Avila
Date Added:
10/14/2015
Rock Candy Your Body
Read the Fine Print
Educational Use
Rating
0.0 stars

Students see and learn how crystallization and inhibition occur by making sugar crystals with and without additives in a supersaturation solution, testing to see how the additives may alter crystallization, such as by improving crystal growth by more or larger crystals. After three days, students analyze the differences between the control crystals and those grown with additives, researching and attempting to deduce why certain additives blocked crystallization, showed no change or improved growth. Students relate what they learn from the rock candy experimentation to engineering drug researchers who design medicines for targeted purposes in the human body. Conduct the first half of this activity one day before presenting the associated lesson, Body Full of Crystals. Then conduct the second half of the activity.

Subject:
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrea Lee
Megan Ketchum
Date Added:
10/14/2015
Rock Solid
Read the Fine Print
Educational Use
Rating
0.0 stars

Rocks cover the earth's surface, including what is below or near human-made structures. With rocks everywhere, breaking rocks can be hazardous and potentially disastrous to people. Students are introduced to three types of material stress related to rocks: compressional, torsional and shear. They learn about rock types (sedimentary, igneous and metamorphic), and about the occurrence of stresses and weathering in nature, including physical, chemical and biological weathering.

Subject:
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jacquelyn F. Sullivan
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/18/2014
Rock and Boat
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a challenge question that they must answer with scientific and mathematical reasoning. The challenge question is: "You have a large rock on a boat that is floating in a pond. You throw the rock overboard and it sinks to the bottom of the pond. Does the water level in the pond rise, drop or remain the same?" Students observe Archimedes' principle in action in this model recreation of the challenge question when a toy boat is placed in a container of water and a rock is placed on the floating boat. Students use terminology learned in the classroom as well as critical thinking skills to derive equations needed to answer this question.

Subject:
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Rockets on a Shoestring Budget
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students revisit the Pop Rockets activity from Lesson 3. This time, however, the design of their pop-rockets will be limited by budgets and supplies. They will get a feel for the limitations of a real engineering project as well as an opportunity to redesign and retest their rockets.

Subject:
Education
Engineering
Mathematics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Geoffrey Hill
Janet Yowell
Jay Shah
Jeff White
Malinda Schaefer Zarske
Date Added:
09/15/2020
Rockin Russian
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Rockin Russian is designed to give students exposure to the Russian language and culture through the medium of Russian music videos. Students are able to perfect their grammar while rocking out to music videos from Russia's pop stars. Based on Russian music videos from MTV Russia, Rockin' Russian is supplemented with exercise materials focusing on pronunciation, vocabulary development, grammar and cultural features. Parts of the videos are embedded into exercises in each category that students can revisit, strengthening their language skills.

Subject:
Foreign languages
Language Arts
Material Type:
Activity/Lab
Assessment
Homework/Assignment
Syllabus
Provider:
University of Texas at Austin
Provider Set:
COERLL
Author:
Garza, Thomas J.
Date Added:
01/13/2021