Students learn about complex networks and how to represent them using graphs. …
Students learn about complex networks and how to represent them using graphs. They also learn that graph theory is a useful mathematical tool for studying complex networks in diverse applications of science and engineering, such as neural networks in the brain, biochemical reaction networks in cells, communication networks, such as the internet, and social networks. Topics covered include set theory, defining a graph, as well as defining the degree of a node and the degree distribution of a graph.
Students learn how the total solar irradiance hitting a photovoltaic (PV) panel …
Students learn how the total solar irradiance hitting a photovoltaic (PV) panel can be increased through the use of a concentrating device, such as a reflector or lens. This is the final lesson in the Photovoltaic Efficiency unit and is intended to accompany a fun design project (see the associated Concentrating on the Sun with PVs activity) to wrap up the unit. However, it can be completed independently of the other unit lessons and activities.
A brief refresher on the Cartesian plane includes how points are written …
A brief refresher on the Cartesian plane includes how points are written in (x, y) format and oriented to the axes, and which directions are positive and negative. Then students learn about what it means for a relation to be a function and how to determine domain and range of a set of data points.
Students learn about the physical force of linear momentum movement in a …
Students learn about the physical force of linear momentum movement in a straight line by investigating collisions. They learn an equation that engineers use to describe momentum. Students also investigate the psychological phenomenon of momentum; they see how the "big mo" of the bandwagon effect contributes to the development of fads and manias, and how modern technology and mass media accelerate and intensify the effect.
This Open Educational Resource (OER) web-book aims to empower English teachers from …
This Open Educational Resource (OER) web-book aims to empower English teachers from across the globe to design their own, authentic, corpus-based lessons by showcasing a range of ideas for creating corpus-informed teaching materials using online resources.
Pre-service trainee teachers from Osnabrück University (Germany) contributed the chapters as part of three English Pedagogy Masters of Education seminars taught by Elen Le Foll.
The introductory chapter “About the project†outlines the rationale and development of the project and discusses how various challenges were overcome. The remaining Lesson Ideas chapters are organised according to the school type for which they were developed.
Part I is dedicated to corpus-informed lesson ideas for primary schools.
Part II showcases corpus-informed lesson ideas for secondary schools.
Part III explores the use of corpora in Content and Language Integrated Learning (CLIL) and bilingual secondary education.
Part IV presents corpus-informed lesson ideas for English for Specific Purposes (ESP) and vocational education.
For teachers and teacher trainees entirely new to corpora, we recommend selecting one or two chapters of interest and following the step-by-step instructions in order to recreate the corpus-informed materials proposed by the chapter authors. As you work your way through these, you will find that the various ideas and methods outlined in all the chapters can easily be transferred to an infinite range of different language foci, topics, and educational contexts.
In addition, most of the chapters include worksheets that can be downloaded as individual PDFs in just one click. Thus, this book also provides a low-threshold introduction to working with corpus-informed materials for teachers with no previous knowledge of corpora. It is hoped that the experience of using these “oven-ready†corpus-informed materials, which require little to no preparation time, will encourage teachers to subsequently invest time in working through a selection of the book’s chapters in order to, in due course, be able to pick their own ingredients and create entirely new and delicious corpus-informed dishes!
Each chapter, or recipe, has a different focus which may be lexical, grammatical, or phraseological, and focuses on a different set of language and/or interdisciplinary skills. The chapters are all similarly structured. The chapter contributors begin by describing their lesson’s learning objectives and outlining the rationale for their choice of topic, corpus, and corpus tool. They then guide the reader through all the necessary steps to create their proposed corpus-informed materials with clear, tutorial-like and illustrated step-by-step instructions. In many instances, the authors also provide instructions for their lesson tasks, as well as (possible) solutions. At the end of each chapter, you will also find additional options and ideas to expand or adapt the proposed lesson to the taste buds of your students.
This lesson helps students recognize that they need to use different types …
This lesson helps students recognize that they need to use different types of searching language in order to retrieve relevant results and to emphasize that research is an iterative process. Use when students have already formulated a research question and are about to begin searching for information on their topic.
Students examine the anthropological perspective of human culture, including such institutions as …
Students examine the anthropological perspective of human culture, including such institutions as kinship, politics, and religion, and evaluate the interrelationship between culture, environment and biology. Students explore the effects of globalization on culture while developing critical thinking skills through the application of essential anthropological approaches, theories, and methods.Login: guest_oclPassword: ocl
Students gain experience with the software/system design process, closely related to the …
Students gain experience with the software/system design process, closely related to the engineering design process, to solve a problem. First, they learn about the Mars Curiosity rover and its mission, including the difficulties that engineers must consider and overcome to operate a rover remotely. Students observe a simulation of a robot being controlled remotely. These experiences guide discussion on how the design process is applied in these scenarios. The lesson culminates in a hands-on experience with the design process as students simulate the remote control of a rover. In the associated activity, students gain further experience with the design process by creating an Android application using App Inventor to control one aspect of a remotely controlled vehicle. (Note: The lesson requires a LEGO® MINDSTORMS® Education NXT base set.)
After students conduct the two associated activities, Density Column Lab - Parts …
After students conduct the two associated activities, Density Column Lab - Parts 1 and 2, present this lesson to provide them with an understanding of why the density column's oil, water and syrup layers do not mix and how the concepts of density and miscibility relate to water chemistry and remediation. Topics covered include miscibility, immiscibility, hydrogen bonds, hydrophobic and hydrophilic. Through the density column lab activities, students see liquids and solids of different densities interact without an understanding of why the resulting layers do not mix. This lesson gives students insight on some of the most fundamental chemical properties of water and how it interacts with different molecules.
Students are introduced to engineering, specifically to biomedical engineering and the engineering …
Students are introduced to engineering, specifically to biomedical engineering and the engineering design process, through a short lecture and an associated hands-on activity in which they design their own medical devices for retrieving foreign bodies from the ear canal. Through the lesson, they learn the basics of ear anatomy and how ear infections occur and are treated. Besides antibiotic treatment, the most common treatment for chronic ear infections is the insertion of ear tubes to drain fluid from the middle ear space to relieve pressure on the ear drum. Medical devices for this procedure, a very common children's surgery, are limited, sometimes resulting in unnecessary complications from a simple procedure. Thus, biomedical engineers must think creatively to develop new solutions (that is, new and improved medical devices/instruments) for inserting ear tubes into the ear drum. The class learns the engineering design process from this ear tube example of a medical device design problem. In the associated activity, students explore biomedical engineering on their own by designing prototype medical devices to solve another ear problem commonly experienced by children: the lodging of a foreign body (such as a pebble, bead or popcorn kernel) in the ear canal. The activity concludes by teams sharing and verbally analyzing their devices.
Students are challenged to design a permanent guest village within the Saguaro …
Students are challenged to design a permanent guest village within the Saguaro National Park in Arizona. The design must provide a true desert experience to visitors while emphasizing sustainable design, protection of the natural environment, and energy and resource conservation. To successfully address and respond to this challenge, students must acquire an understanding of desert ecology, environmental limiting factors, species adaptations and resource utilization. Following theintroduction, students generate ideas and consider the knowledge required to complete the challenge. The lectures and activities that follow serve to develop this level of comprehension. To introduce the concepts of healthy ecosystems, biomimetics and the importance of sustainable environmental design, students watch three video clips of experts. These clips provide direction for student research and challenge design solutions.
Students are introduced to detail drawings and the importance of clearly documenting …
Students are introduced to detail drawings and the importance of clearly documenting and communicating their designs. They are introduced to the American National Standards Institute (ANSI) Y14.5 standard, which controls how engineers communicate and archive design information. They are introduced to standard paper sizes and drawing view conventions, which are major components of the Y14.5 standard.
Students are introduced to the unit challenge: To develop a painless means …
Students are introduced to the unit challenge: To develop a painless means of identifying cancerous tumors. Solving the challenge depends on an understanding of the properties of stress and strain. After learning the challenge question, students generate ideas and consider the knowledge required to solve the challenge. Then they read an expert's opinion on ultrasound imaging and the potentials for detecting cancerous tumors. This interview helps to direct student research and learning towards finding a solution.
With a simple demonstration activity, students are introduced to the concept of …
With a simple demonstration activity, students are introduced to the concept of friction as a force that impedes motion when two surfaces are in contact. Then, in the Associated Activity (Sliding and Stuttering), they work in teams to use a spring scale to drag an object such as a ceramic coffee cup along a table top or the floor. The spring scale allows them to measure the frictional force that exists between the moving cup and the surface it slides on. By modifying the bottom surface of the cup, students can find out what kinds of surfaces generate more or less friction. They also discover that both static and kinetic friction are involved when an object initially at rest is caused to slide across a surface.
Students explore the concept of optical character recognition (OCR) in a problem-solving …
Students explore the concept of optical character recognition (OCR) in a problem-solving environment. They research OCR and OCR techniques and then apply those methods to the design challenge by developing algorithms capable of correctly "reading" a number on a typical high school sports scoreboard. Students use the structure of the engineering design process to guide them to develop successful algorithms. In the associated activity, student groups implement, test and revise their algorithms. This software design lesson/activity set is designed to be part of a Java programming class.
Testing is critical to any design, whether the creation of new software …
Testing is critical to any design, whether the creation of new software or a bridge across a wide river. Despite risking the quality of the design, the testing stage is often hurried in order to get products to market. In this lesson, students focus on the testing phase of the software/systems design process. They start by exploring existing examples of program testing using the CodingBat website, which contains a series of problems and challenges that students solve using the Java programming language. Working in teams, students practice writing test cases for other groups' code, and then write test cases for a program before writing the program itself.
Using the same method for measuring friction that was used in the …
Using the same method for measuring friction that was used in the previous lesson (Discovering Friction), students design and conduct an experiment to determine if weight added incrementally to an object affects the amount of friction encountered when it slides across a flat surface. After graphing the data from their experiments, students can calculate the coefficients of friction between the object and the surface it moved upon, for both static and kinetic friction.
After watching video clips from the Harry Potter and the Goblet of …
After watching video clips from the Harry Potter and the Goblet of Fire movie, students explore the use of Punnett squares to predict genetic trait inheritance. The objective of this lesson is to articulate concepts related to genetics through direct immersive interaction based on the theme, The Science Behind Harry Potter. Students' interest is piqued by the use of popular culture in the classroom.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.