Following the steps of the iterative engineering design process, student teams use …
Following the steps of the iterative engineering design process, student teams use what they learned in the previous lessons and activity in this unit to research and choose materials for their model heart valves and test those materials to compare their properties to known properties of real heart valve tissues. Once testing is complete, they choose final materials and design and construct prototype valve models, then test them and evaluate their data. Based on their evaluations, students consider how they might redesign their models for improvement and then change some aspect of their models and retest aiming to design optimal heart valve models as solutions to the unit's overarching design challenge. They conclude by presenting for client review, in both verbal and written portfolio/report formats, summaries and descriptions of their final products with supporting data.
Using the same method for measuring friction that was used in the …
Using the same method for measuring friction that was used in the previous lesson (Discovering Friction), students design and conduct an experiment to determine if weight added incrementally to an object affects the amount of friction encountered when it slides across a flat surface. After graphing the data from their experiments, students can calculate the coefficients of friction between the object and the surface it moved upon, for both static and kinetic friction.
In the first part of the activity, each student chews a piece …
In the first part of the activity, each student chews a piece of gum until it loses its sweetness, and then leaves the gum to dry for several days before weighing it to determine the amount of mass lost. This mass corresponds to the amount of sugar in the gum, and can be compared to the amount stated on the package label. In the second part of the activity, students work in groups to design and conduct new experiments based on questions of their own choosing. These questions arise naturally from observations during the first experiment, and from students' own experiences with and knowledge of the many varieties of chewing and bubble gums available.
After watching video clips from the Harry Potter and the Goblet of …
After watching video clips from the Harry Potter and the Goblet of Fire movie, students explore the use of Punnett squares to predict genetic trait inheritance. The objective of this lesson is to articulate concepts related to genetics through direct immersive interaction based on the theme, The Science Behind Harry Potter. Students' interest is piqued by the use of popular culture in the classroom.
Student groups are provided with a generic car base on which to …
Student groups are provided with a generic car base on which to design a device/enclosure to protect an egg on or in the car as it rolls down a ramp at increasing slopes. During this in-depth physics/science/technology activity, student teams design, build and test their creations to meet the design challenge, and are expected to perform basic mathematical calculations using collected data, including a summative cost to benefit ratio.
The resource "The Doppler Effect" is included in the Physics Fundamentals topic …
The resource "The Doppler Effect" is included in the Physics Fundamentals topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.
Students practice creating rudimentary detail drawings. They learn how engineers communicate the …
Students practice creating rudimentary detail drawings. They learn how engineers communicate the technical information about their designs using the basic components of detail drawings. They practice creating their own drawings of a three-dimensional block and a special LEGO piece, and then make 3D sketches of an unknown object using only the information provided in its detail drawing.
Students use a compass and a permanent magnet to trace the magnetic …
Students use a compass and a permanent magnet to trace the magnetic field lines produced by the magnet. By positioning the compass in enough spots around the magnet, the overall magnet field will be evident from the collection of arrows representing the direction of the compass needle. In activities 3 and 4 of this unit, students will use this information to design a way to solve the grand challenge of separating metal for a recycling company.
The course focuses on three main dredging processes: the cutting of sand, …
The course focuses on three main dredging processes: the cutting of sand, clay and rock, the sedimentation process in hopper dredges and the breaching process
The purpose of this course is to convey knowledge of the various …
The purpose of this course is to convey knowledge of the various physical processes associated with slurry handling and transport during dredging. This knowledge is needed for the design of dredging equipment and for planning efficient equipment operations. The various processes are discussed and theories and simulation models that describe the processes are presented and compared during the course. The course can be broken down into four elements: 1. Pumps and engines a. Pump characteristics and cavitation b. Influence of particles on pump characteristics. 2. Hydraulic transport in pipelines a. Two-phase (solid-liquid) flow through pipelines b. Newtonian slurries c. Non Newtonian slurries d. Inclined and long pipelines. 3. Pump and pipeline systems a. Operation point and areas b. Production factors. 4. Case studies
The resource "ELI the ICE man" is included in the "Electrical engineering" …
The resource "ELI the ICE man" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.
Students learn what causes earthquakes, how we measure and locate them, and …
Students learn what causes earthquakes, how we measure and locate them, and their effects and consequences. Through the online Earthquakes Living Lab, student pairs explore various types of seismic waves and the differences between shear waves and compressional waves. They conduct research using the portion of the living lab that focuses primarily on the instruments, methods and data used to measure and locate earthquakes. Using real-time U.S. Geological Survey (USGS) data accessed through the living lab interface, students locate where earthquakes are occurring and how frequently. Students propose questions and analyze the real-world seismic data to find answers and form conclusions. They are asked to think critically about why earthquakes occur and how knowledge about earthquakes can be helpful to engineers. A worksheet serves as a student guide for the activity.
Students learn how engineers characterize earthquakes through seismic data. Then, acting as …
Students learn how engineers characterize earthquakes through seismic data. Then, acting as engineers, they use real-world seismograph data and a tutorial/simulation accessed through the Earthquakes Living Lab to locate earthquake epicenters via triangulation and determine earthquake magnitudes. Student pairs examine seismic waves, S waves and P waves recorded on seismograms, measuring the key S-P interval. Students then determine the maximum S wave amplitudes in order to determine earthquake magnitude, a measure of the amount of energy released. Students consider how engineers might use and implement seismic data in their design work. A worksheet serves as a student guide for the activity.
Students study how geology relates to the frequency of large-magnitude earthquakes in …
Students study how geology relates to the frequency of large-magnitude earthquakes in Japan. Using the online resources provided through the Earthquakes Living Lab, students investigate reasons why large earthquakes occur in this region, drawing conclusions from tectonic plate structures and the locations of fault lines. Working in pairs, students explore the 1995 Kobe earthquake, why it happened and the destruction it caused. Students also think like engineers to predict where other earthquakes are likely to occur and what precautions might be taken. A worksheet serves as a student guide for the activity.
To gain an understanding of mixtures and the concept of separation of …
To gain an understanding of mixtures and the concept of separation of mixtures, students use strong magnets to find the element of iron in iron-fortified breakfast cereal flakes. Through this activity, they see how the iron component of this heterogeneous mixture (cereal) retains its properties and can thus be separated by physical means.
Students learn how rooftop gardens help the environment and the lives of …
Students learn how rooftop gardens help the environment and the lives of people, especially in urban areas. They gain an understanding of how plants reduce the urban heat island effect, improve air quality, provide agriculture space, reduce energy consumption and increase the aesthetic quality of cities. This draws upon the science of heat transfer (conduction, convection, radiation, materials, color) and ecology (plants, shade, carbon dioxide, photosynthesis), and the engineering requirements for rooftop gardens. In the associated activity, students apply their scientific knowledge to model and measure the effects of green roofs.
Deze cursus biedt inzicht in besluitvorming en bedrijfsvoering op inleidend niveau; en …
Deze cursus biedt inzicht in besluitvorming en bedrijfsvoering op inleidend niveau; en biedt inzicht in de basisbegrippen van de micro- en markteconomie; Na het volgen van deze module kunt u: 1)basisbegrippen en theorieĚÇn van de micro- en markteconomie toelichten; 2)belangrijke concepten en theorieĚÇn toepassen op eenvoudige situaties; 3)elementen uit de discipline herkennen in concrete voorbeelden van besluitvorming en management
Students act as Mars exploratory rover engineers, designing, building and displaying their …
Students act as Mars exploratory rover engineers, designing, building and displaying their edible rovers to a design review. To begin, they evaluate rover equipment and material options to determine which parts might fit in their given NASA budget. With provided parts and material lists, teams analyze their design options and use their findings to design their rovers.
This USGS video uses Raleigh, NC as an example of the effects …
This USGS video uses Raleigh, NC as an example of the effects of urbanization on stream ecosystems. The resource, "Effects of Urbanization on Stream Ecosystems" included in "Lesson 1 Intro to Stormwater Management" is a part of "Unit 08 Storm Water Management Capstone" included in Energy & Sustainability ES - Course 2.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.