Updating search results...

Engineering

1682 affiliated resources

Search Resources

View
Selected filters:
How Far?
Read the Fine Print
Educational Use
Rating
0.0 stars

To learn how friction affects motion, students explore how different textures provide varying amounts of friction to objects moving across them. They build a tool to measure the amount of friction between a note card and various surfaces by measuring the distance that a rubber band stretches. They experiment with a range of materials to determine which provides the least/most friction.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
How Far Does a Lava Flow Go?
Read the Fine Print
Educational Use
Rating
0.0 stars

While learning about volcanoes, magma and lava flows, students learn about the properties of liquid movement, coming to understand viscosity and other factors that increase and decrease liquid flow. They also learn about lava composition and its risk to human settlements.

Subject:
Engineering
Mathematics
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brittany Enzmann
Date Added:
09/18/2014
How Fluid Systems Work
Rating
0.0 stars

The resource "How Fluid Systems Work" is included in the Fluid Power Fundamentals topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Engineering
Mechanical engineering
Date Added:
09/30/2015
How Inductors Work
Rating
0.0 stars

The resource "How Inductors Work" is included in the AC Circuit Analysis topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Electrical engineering
Engineering
Date Added:
09/30/2015
How Much Sugar is in Bubble Gum?
Read the Fine Print
Educational Use
Rating
0.0 stars

Most of the flavoring in gum is due to the sugar or other sweetener it contains. As gum is chewed, the sugar dissolves and is swallowed. After a piece of gum loses its flavor, it can be left to dry at room temperature and then the difference between its initial (unchewed) mass and its chewed mass can be used to calculate the percentage of sugar in the gum. This demonstration experiment is used to generate new questions about gums and their ingredients, and students can then design and execute new experiments based on their own questions.

Subject:
Engineering
Health and Medical Science
Nutrition
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
How Servo Motors Work
Rating
0.0 stars

The resource "How Servo Motors Work" is included in the Motion Control topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Engineering
Mechanical engineering
Date Added:
09/30/2015
How Solenoids Work
Rating
0.0 stars

The resource "How Solenoids Work" is included in the Electrical Motor Control & Power topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Electrical engineering
Engineering
Date Added:
09/30/2015
How Stuff Works: How Prosthetic Limbs Work
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource, ''Reading How Stuff Works Modern Prosthetic Limbs (pdf)'' included in "Lesson 1 Skeletal System" is a part of "Unit 06 Musculoskeletal System" included in Health & Life Sciences HLS - Course 1.

Subject:
Agriculture & Natural Science
Anatomy
Biochemistry
Biology
Biomedical engineering
Engineering
Material Type:
Reading
Provider:
HowStuffWorks
Date Added:
03/13/2015
How Transformers Work
Rating
0.0 stars

The resource "How Transformers Work" is included in the AC Circuit Analysis topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Electrical engineering
Engineering
Date Added:
09/30/2015
How a Hybrid Works
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate different forms of hybrid engines as well as briefly conclude a look at the different forms of potential energy, which concludes the Research and Revise step of the legacy cycle. Students are introduced to basic circuit schematics and apply their understanding of the difference between series and parallel circuits to current research on hybrid cars.

Subject:
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
Date Added:
09/18/2014
How to Design a Better Smartphone Case
Read the Fine Print
Educational Use
Rating
0.0 stars

Engineers create and use new materials, as well as new combinations of existing materials to design innovative new products and technologies—all based upon the chemical and physical properties of given substances. In this activity, students act as materials engineers as they learn about and use chemical and physical properties including tessellated geometric designs and shape to build better smartphone cases. Guided by the steps of the engineering design process, they analyze various materials and substances for their properties, design/test/improve a prototype model, and create a dot plot of their prototype testing results.

Subject:
Engineering
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Courtney Phelps
Jill Weaver
Maggie Demarse
Marjorie Langston
Date Added:
11/28/2018
How to Design a Successful Business Model
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Do you want to start or grow your own business, go international, or avoid bankruptcy?

In this business and management course, you will learn the key steps to take to design or innovate your own business model. You will learn about the trade-offs to be made, and the design issues that are critical for a viable and sustainable business model.

This course will help you answer questions like, how do I create a simple business model in a structured way, how do I engage my users and how do I create value for my customers as well as revenue for my company.

Subject:
Business and Marketing Education
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. G.A. de Reuver
Dr.ir. T.I. Haaker
Prof.dr. W.A.G.A. Bouwman
Date Added:
01/12/2021
How to Make Yeast Cells Thrive
Read the Fine Print
Educational Use
Rating
0.0 stars

Students set up and run the experiments they designed in the Population Growth in Yeasts associated lesson, using simple yeast-molasses cultures in test tubes. Population growth is indicated by the amount of respiration occurring in the cultures, which in turn is indicated by the growth of carbon dioxide bubbles trapped within the culture tubes. Using this method, students test for a variety of environmental influences, such as temperature, food supply and pH.

Subject:
Agriculture & Natural Science
Biology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
How to Pull Something Heavy
Read the Fine Print
Educational Use
Rating
0.0 stars

Students measure and analyze forces that act on vehicles pulling heavy objects while moving at a constant speed on a frictional surface. They study how the cars interact with their environments through forces, and discover which parameters in the design of the cars and environments could be altered to improve vehicles' pulling power. This LEGO® MINDSTORMS® based activity is geared towards, but not limited to, physics students.

Subject:
Education
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Irina Igel
Date Added:
09/18/2014
How to be a Great Navigator!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will learn how great navigators of the past stayed on course that is, the historical methods of navigation. The concepts of dead reckoning and celestial navigation are discussed.

Subject:
Engineering
Mathematics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Penny Axelrad
Date Added:
09/18/2014
The Human Controller
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"The Human Controller" presents and discusses design and evaluation issues of human-machine interaction. The focus is on understanding human perception-action couplings (limitations, preferences, adaptation) and on quantifying control behavior of humans in the direct manual control loop of vehicles, robots or other man-made tools. Case studies from automotive, aviation, medical and tele-operation applications are discussed, with a special focus on the importance of including and enhancing haptics (=the sense of touch) during manual control.

Subject:
Engineering
Material Type:
Activity/Lab
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. D.A. Abbink
Date Added:
02/25/2016
Hybrid Vehicle Design Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Through four lessons and four hands-on associated activities, this unit provides a way to teach the overarching concept of energy as it relates to both kinetic and potential energy. Within these topics, students are exposed to gravitational potential, spring potential, the Carnot engine, temperature scales and simple magnets. During the module, students apply these scientific concepts to solve the following engineering challenge: "The rising price of gasoline has many effects on the US economy and the environment. You have been contracted by an engineering firm to help design a physical energy storage system for a new hybrid vehicle for Nissan. How would you go about solving this problem? What information would you consider to be important to know? You will create a small prototype of your design idea and make a sales pitch to Nissan at the end of the unit." This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn. This module is written for a first-year algebra-based physics class, though it could easily be modified for conceptual physics.

Subject:
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
Date Added:
09/18/2014
Hydrogen-Oxygen Reaction Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

This lab exercise exposes students to a potentially new alternative energy source hydrogen gas. Student teams are given a hydrogen generator and an oxygen generator. They balance the chemical equation for the combustion of hydrogen gas in the presence of oxygen. Then they analyze what the equation really means. Two hypotheses are given, based on what one might predict upon analyzing the chemical equation. Once students have thought about the process, they are walked through the experiment and shown how to collect the gas in different ratios. By trial and error, students determine the ideal combustion ratio. For both volume of explosion and kick generated by explosion, they qualitatively record results on a 0-4 scale. Then, students evaluate their collected results to see if the hypotheses were correct and how their results match the theoretical equation. Students learn that while hydrogen will most commonly be used for fuel cells (no combustion situation), it has been used in rocket engines (for which a tremendous combustion occurs).

Subject:
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Herring
Stephen Dent
Date Added:
09/18/2014