Updating search results...

Engineering

1682 affiliated resources

Search Resources

View
Selected filters:
Electric field
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "Electric field" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Electrostatics" topic area.

Subject:
Electrical engineering
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Monterey Institute for Technology and Education
Sal Khan
Date Added:
09/22/2013
Electric force
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "Electric force" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Electrostatics" topic area.

Subject:
Electrical engineering
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
11/16/2016
Electricity and Magnetic Fields
Read the Fine Print
Educational Use
Rating
0.0 stars

The grand challenge for this legacy cycle unit is for students to design a way to help a recycler separate aluminum from steel scrap metal. In previous lessons, they have looked at how magnetism might be utilized. In this lesson, students think about how they might use magnets and how they might confront the problem of turning the magnetic field off. Through the accompanying activity students explore the nature of an electrically induced magnetic field and its applicability to the needed magnet.

Subject:
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Electric potential energy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "Electric potential energy" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Electrostatics" topic area.

Subject:
Electrical engineering
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
09/22/2013
Electric potential, voltage
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "Electric potential, voltage" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Electrostatics" topic area.

Subject:
Electrical engineering
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Khan Academy
Date Added:
09/23/2013
Electrocardiograph Building
Read the Fine Print
Educational Use
Rating
0.0 stars

Building on concepts taught in the associated lesson, students learn about bioelectricity, electrical circuits and biology as they use deductive and analytical thinking skills in connection with an engineering education. Students interact with a rudimentary electrocardiograph circuit (made by the teacher) and examine the simplicity of the device. They get to see their own cardiac signals and test the device themselves. During the second part of the activity, a series of worksheets, students examine different EKG print-outs and look for irregularities, as is done for heart disease detection.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Crawford
Katherine Murray
Leyf Peirce
Mark Remaly
Shayn Peirce
Date Added:
09/18/2014
Electromagnetic Radiation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a hypothetical scenario that delivers the unit's Grand Challenge Question: To apply an understanding of nanoparticles to treat, detect and protect against skin cancer. Towards finding a solution, they begin the research phase by investigating the first research question: What is electromagnetic energy? Students learn about the electromagnetic spectrum, ultraviolet radiation (including UVA, UVB and UVC rays), photon energy, the relationship between wave frequency and energy (c = λν), as well as about the Earth's ozone-layer protection and that nanoparticles are being used for medical applications. The lecture material also includes information on photo energy and the dual particle/wave model of light. Students complete a problem set to calculate frequency and energy.

Subject:
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Electromagnetic Waves: How Do Sunglasses Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the scientific and mathematical concepts around electromagnetic light properties that enable the engineering of sunglasses for eye protection. They compare and contrast tinted and polarized lenses as well as learn about light intensity and how different mediums reduce the intensities of various electromagnetic radiation wavelengths. Through a PowerPoint® presentation, students learn about light polarization, transmission, reflection, intensity, attenuation, and Malus’ law. A demo using two slinky springs helps to illustrate wave disturbances and different-direction polarizations. As a mini-activity, students manipulate slide-mounted polarizing filters to alter light intensity and see how polarization by transmission works. Students use the Malus’ law equation to calculate the transmitted light intensity and learn about Brewster’s angle. Two math problem student handouts are provided. Students also brainstorm ideas on how sunglasses could be designed and improved, which prepares them for the associated hands-on design/build activity.

Subject:
Engineering
Physical Science
Physics
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Adam Alster
Drew Kim
Quan Tran
Date Added:
05/30/2018
Electromagnetics, Volume 1
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Electromagnetics Volume 1 by Steven W. Ellingson is a 225-page, peer-reviewed open educational resource intended for electrical engineering students in the third year of a bachelor of science degree program. It is intended as a primary textbook for a one-semester first course in undergraduate engineering electromagnetics. The book employs the “transmission lines first” approach in which transmission lines are introduced using a lumped-element equivalent circuit model for a differential length of transmission line, leading to one-dimensional wage equations for voltage and current.

Suggested citation: Ellingson, Steven W. (2018) Electromagnetics, Vol. 1. Blacksburg, VA: VT Publishing. https://doi.org/10.21061/electromagnetics-vol-1 CC BY-SA 4.0

Three formats of this book are available:
Print (ISBN 978-0-9979201-8-5)
PDF (ISBN 978-0-9979201-9-2)
LaTeX source files

If you are a professor reviewing, adopting, or adapting this textbook please help us understand a little more about your use by filling out this form: http://bit.ly/vtpublishing-updates

Additional Resources
Problem sets and the corresponding solution manual are also available.
Community portal for the Electromagnetics series https://www.oercommons.org/groups/electromagnetics-user-group/3455/
Faculty listserv for the Electromagnetics series https://groups.google.com/a/vt.edu/d/forum/electromagnetics-g
Submit feedback and suggestions http://bit.ly/electromagnetics-suggestion

Table of Contents:
Chapter 1: Preliminary Concepts
Chapter 2: Electric and Magnetic Fields
Chapter 3: Transmission Lines
Chapter 4: Vector Analysis
Chapter 5: Electrostatics
Chapter 6: Steady Current and Conductivity
Chapter 7: Magnetostatics
Chapter 8: Time-Varying Fields
Chapter 9: Plane Waves in Lossless Media
Appendixes
A. Constitutive Parameters of Some Common Materials
B. Mathematical Formulas
C. Physical Constants

About the Author: Steven W. Ellingson (ellingson@vt.edu) is an Associate Professor at Virginia Tech in Blacksburg, Virginia in the United States. He received PhD and MS degrees in Electrical Engineering from the Ohio State University and a BS in Electrical & Computer Engineering from Clarkson University. He was employed by the US Army, Booz-Allen & Hamilton, Raytheon, and the Ohio State University ElectroScience Laboratory before joining the faculty of Virginia Tech, where he teaches courses in electromagnetics, radio frequency systems, wireless communications, and signal processing. His research includes topics in wireless communications, radio science, and radio frequency instrumentation. Professor Ellingson serves as a consultant to industry and government and is the author of Radio Systems Engineering (Cambridge University Press, 2016).

This textbook is part of the Open Electromagnetics Project led by Steven W. Ellingson at Virginia Tech. The goal of the project is to create no-cost openly-licensed content for courses in undergraduate engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources.

Accessibility features of this book: Screen reader friendly, navigation, and Alt-text for all images and figures.

Publication of this book was made possible in part by the Open Education Faculty Initiative Grant program at the University Libraries at Virginia Tech. http://guides.lib.vt.edu/oer/grants

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Steven W. Ellingson
Date Added:
01/13/2021
Electromagnetics, Volume 2
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Electromagnetics, volume 2 by Steven W. Ellingson is a 216-page peer-reviewed open textbook designed especially for electrical engineering students in the third year of a bachelor of science degree program. It is intended as the primary textbook for the second semester of a two-semester undergraduate engineering electromagnetics sequence. The book addresses magnetic force and the Biot-Savart law; general and lossy media; parallel plate and rectangular waveguides; parallel wire, microstrip, and coaxial transmission lines; AC current flow and skin depth; reflection and transmission at planar boundaries; fields in parallel plate, parallel wire, and microstrip transmission lines; optical fiber; and radiation and antennas.

Table of Contents:
Chapter 1: Preliminary Concepts
Chapter 2: Magnetostatics Redux
Chapter 3: Wave Propagation in General Media
Chapter 4: Current Flow in Imperfect Conductors
Chapter 5: Wave Reflection and Transmission
Chapter 6: Waveguides
Chapter 7: Transmission Lines Redux
Chapter 8: Optical Fiber
Chapter 9: Radiation
Chapter 10: Antennas
Appendix A: Constitutive Parameters of Some Common Materials
Appendix B: Mathematical Formulas
Appendix C: Physical Constants

Additional Resources
Problem sets and the corresponding solution manuals
Slides of figures used in and created for the book
LaTeX sourcefiles.
Screen-reader friendly version
Errata for Volume 2
Collaborator portal for the Electromagnetics series https://www.oercommons.org/groups/electromagnetics-user-group/3455
Faculty listserv for the Electromagnetics series
Submit feedback and suggestions

The Open Electromagnetics Project https://www.faculty.ece.vt.edu/swe/oem
Led by Steven W. Ellingson at Virginia Tech, the goal of the Open Electromagnetics Project is to create no-cost openly-licensed content for courses in engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources.

Books in this Series
Electromagnetics, Volume 1 https://doi.org/10.21061/electromagnetics-vol-1
Electromagnetics, Volume 2 https://doi.org/10.21061/electromagnetics-vol-2

To express your interest in a book or this series, please visit http://bit.ly/vtpublishing-updates

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Steven W. Ellingson
Date Added:
01/13/2021
Electromagnets
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, the students will complete the grand challenge and design an electromagnet to separate steel from aluminum for the recycler. In order to do this, students compare the induced magnetic field of an electric current with the magnetic field of a permanent magnet and must make the former look like the latter. They discover that looping the current produces the desired effect and find ways to further strengthen the magnetic field.

Subject:
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Electronic Instrumentation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a basic course on Instrumentation and Measurement. Firstly, the detection limit in a typical instrument for measurement of an electrical quantity is determined for: offset, finite common-mode rejection, noise and interference. The dominant source of uncertainty is identified and the equivalent input voltage/current sources are calculated. Secondly, the measurement of a non-electrical quantity is discussed. In this case the detection limit should be expressed in terms of the non-electrical input parameter of interest. Issues discussed are: (cross-)sensitivities in frequently used transduction effects, non-electrical source loading and noise in the non-electrical signal domain. Coupled domain formal modeling is subsequently introduced to facilitate analytical multi-domain system analysis. Finally, the detection limit in typical applications in the mechanical, thermal, optical and magnetic signal domain are analysed, along with circuit and system techniques to maximize overall system detectivity.

Subject:
Electrical engineering
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
K.A.A. Makinwa
Date Added:
02/08/2016
Electronic Oscillators
Rating
0.0 stars

The resource "Electronic Oscillators" is included in the Solid States & Systems topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Engineering
Mechanical engineering
Date Added:
09/30/2015
Electronic Power Conversion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to power electronics. First the principles of power conversion with switching circuits are treated as well as main applications of power electronics. Next the basic circuits of power electronics are explained, including ac-dc converters (diode rectifiers), dc-dc converters (non-isolated and isolated) and dc-ac converters (inverters). Related issues such as pulse width modulation, methods of analysis, voltage distortion and power quality are treated in conjunction with the basic circuits. The main principles of operation of most commonly used power semiconductor switches are explained. Finally, the role of power electronics in sustainable energy future, including renewable energy systems and energy efficiency is discussed.

Study Goals
To get acquainted with applications of power electronics, to obtain insight in the principles of power electronics, to get an overview of power electronic circuits and be able to select appropriate circuits for specific applications and finally to be able to analyse the circuits. The focus in the course is on analysis and to a lesser extent on design.

Subject:
Electrical engineering
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
J. Popovic
Date Added:
02/09/2016
Elektronische Signaalbewerking
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Na het behalen van dit vak kan de student:

filter-overdrachtsfuncties middels state-space synthese afbeelden op filter-topologieen, deze optimaliseren m.b.t. dynamisch bereik en gevoeligheid voor componenten-variaties en realiseren met behulp van integratoren;
circuits voor integratoren, analoge filters, continue-tijd filters, en nullors (operationele versterkers) ontwerpen en effecten ten gevolge van niet-ideale componenten en aliasing analyseren

Subject:
Electrical engineering
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. W.A. Serdijn
Date Added:
01/12/2021
Element, Mixture, Compound
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain a better understanding of the different types of materials as pure substances and mixtures and learn to distinguish between homogeneous and heterogeneous mixtures by discussing an assortment of example materials they use and encounter in their daily lives.

Subject:
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Parnia Mohammadi
Roberto Dimaliwat
Date Added:
09/18/2014
Elementary Ergonomics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Elementary Ergonomics is an introduction to basic physical ergonomics theory and practice for students of other - than Industrial Design Engineering of Delft University of Technology - institutes for higher learning, such as Dutch universities, universities of EU and non-EU countries, and universities of applied sciences. The course consists of the following topics: anthropometry (1D, 2D, 3D including digital human modelling), biomechanics, and comfort.

Furthermore, the role of user involvement in the design process (evaluation of existing products and environments and of created concepts, models and prototypes) will be explained. Moreover, the meaning and representation of use cues in product design will be highlighted.

Subject:
Architectural engineering
Engineering
Material Type:
Homework/Assignment
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
ir M.C. Dekker
Date Added:
02/26/2016
Elements of Motion Control
Rating
0.0 stars

The resource "Elements of Motion Control" is included in the Motion Control topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Engineering
Mechanical engineering
Date Added:
09/30/2015
Emerging Threats in Cybersecurity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

13. Brave New World - Emerging Threats: Cybersecurity

The trifecta of globalization, urbanization and digitization have created new opportunities and challenges across our nation, cities, boroughs and urban centers. Cities in particular are in a unique position at the center of commerce and technology becoming hubs for innovation and practical application of emerging technology. In this rapidly changing 24/7 digitized world, governments are leveraging innovation and technology to become more effective, efficient, transparent and to be able to better plan for and anticipate the needs of its citizens, businesses and community organizations. This class will provide the framework for how cities and communities can become smarter and more accessible with technology and more connected.

Subject:
Electrical engineering
Engineering
Material Type:
Lesson
Provider:
CUNY Academic Works
Provider Set:
Medgar Evers College
Author:
Rhonda S. Binda
Date Added:
01/12/2021
Empirical Research Methods
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The main topics of study considered in light of the above learning outcomes are:Research philosophy (e.g. positivism, empiricism, naturalism)Formulating empirical research questions and conceptual research modelsCausality effects and relationshipsValidity and ReliabilityScales of measurement (e.g. nominal, ordinal, interval, ratio)Sampling methods (e.g. experiment, survey, observations) and measure instruments (e.g. Likert scales, semantic differential, event versus time sampling)Experimental design (e.g. within and between-subjects, factorial design, counter-balancing, Latin square)Biases in empirical research approaches (e.g. confounding variables, statistical power)Data preparation (e.g. standardization of data, reliability analysis, Inter-rater reliability)Hypothesis testing, t-test, (M)ANOVA, correlation, regression analysisNon-parametric approaches to data analysis

Subject:
Engineering
Material Type:
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.Ir. W.P. Brinkman
Date Added:
01/12/2021