Updating search results...

Search Resources

1012 Results

View
Selected filters:
  • Physics
Shantytown Construction Redesign
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about STEM education through an engineering design challenge that focuses on improving building materials used in shantytowns. First, they consider the factors that lead to shantytown development. After researching the implications of living in shantytowns, students design, build and test cement-based concrete block composites made of discarded and/or recycled materials. The aim is to make a material that is resistant to degradation by chemicals or climate, can withstand natural disasters, and endure through human-made conditions (such as urban overcrowding or pollution). The composites must be made of materials that are inexpensive and readily available so that they are viable alternative in shantytown communities. Students assess the results both chemically and physically and then iterate their designs with the materials that proved to be strongest.

Subject:
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Brett Doudican
Jenny Montgomery
Kerensa Hughes
Marjorie Langston
Nicholas Kaufman
Date Added:
09/06/2018
Shifts in Equilibrium
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Equilibrium occurs when the overall state of a system is constant. Equilibrium can be static (nothing in the system is changing), or dynamic (little parts of the system are changing, but overall the state isn't changing). In my video, I'll demonstrate systems in both types of equilibrium, and how the equilibrium states can be shifted.

Subject:
Electrical engineering
Engineering
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Author:
Khan Academy
Date Added:
09/22/2013
Shoes Under Pressure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the basic physics behind walking, and the design and engineering of shoes to accommodate different gaits. They are introduced to pressure, force and impulse as they relate to shoes, walking and running. Students learn about the mechanics of walking, shoe design and common gait misalignments that often lead to injury.

Subject:
Engineering
Physical Science
Physics
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Eszter Horanyi
Date Added:
01/01/2015
A Shot Under Pressure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use their understanding of projectile physics and fluid dynamics to find the water pressure in water guns. By measuring the range of the water jets, they are able to calculate the theoretical pressure. Students create graphs to analyze how the predicted pressure relates to the number of times they pump the water gun before shooting.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
James Prager
Karen King
Date Added:
09/18/2014
Silly Semi-Solids
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams make polymers using ordinary household supplies (glue, borax, water). They experiment with the semi-solid material when warm and cold to see and feel its elastic and viscous properties. Students will begin to understand how the electrical forces between particles change as temperature or the force applied to the substance changes. Is it a solid, a liquid, or something in between? How might it be used?

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jacqueline Lanfranchi
Mark Bronski
Mike Galecki
Date Added:
09/18/2014
Simple Coulter Counter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build and use a very basic Coulter electric sensing zone particle counter to count an unknown number of particles in a sample of "paint" to determine if enough particles per ml of "paint" exist to meet a quality standard. In a lab experiment, student teams each build an apparatus and circuit, set up data acquisition equipment, make a salt-soap solution, test liquid flow in the apparatus, take data, and make graphs to count particles.

Subject:
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Simple Harmonic Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

Paul Andersen explains how simple harmonic motion occurs when a restoring force returns an object toward equilibrium. The two types of harmonic motion studied in AP Physics are the mass spring oscillator and the simple pendulum.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Bozeman Science
Date Added:
09/22/2016
Simple Harmonic Motion: Crash Course Physics #16
Read the Fine Print
Educational Use
Rating
0.0 stars

The video resource "Simple Harmonic Motion: Crash Course Physics #16" is included in the "Sociology" course from the resources series of "Crash Course". Crash Course is a educational video series from John and Hank Green.

Subject:
Physical Science
Physics
Material Type:
Lesson
Date Added:
05/08/2018
Simple Machines
Read the Fine Print
Educational Use
Rating
0.0 stars

Mr. Andersen explains the simple principles behind simple machines. He shows how the mechanical advantage of a simple machine can increase the input force. A brief discussion of work is also included.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Bozeman Science
Date Added:
05/29/2014
Simple Machines and the Rube Goldberg Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students research simple machines and other mechanisms as they learn about and make Rube Goldberg machines. Working in teams, students design and build their own Rube Goldberg devices with 10 separate steps, including at least six simple machines. In addition to the use of readily available classroom craft supplies, 3D printers may be used (if available) to design and print one or more device mechanisms. Students love this open-ended, team-building project with great potential for creativity and humor.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Brad Whitehead
Date Added:
10/30/2018
Simple Nature
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This is a calculus-based physics textbook meant for the type of freshman survey course taken by engineering and physical science majors, or for AP Physics C. It uses a nontraditional order of topics, with energy coming before force. For instructors who prefer the traditional sequence, there is a drop-in replacement for ch. 0-4, Mechanics, that covers force before energy. My text for the type of course usually taken by biology majors is Light and Matter.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Light and Matter
Provider Set:
Light and Matter Books
Author:
Benjamin Crowell, Fullerton College
Date Added:
01/13/2021
A Simple Solution for the Circus
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students are challenged to design a contraption using simple machines to move a circus elephant into a rail car. After students consider their audience and constraints, they work in groups to brainstorm ideas and select one concept to communicate to the class.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Michael Bendewald
Date Added:
10/14/2015
Simple protein-level dynamics
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

In a toy model of a cell, protein X is produced according to a translation rate coefficient and eliminated according to a degradation rate coefficient. The protein copy number at which the rates for these processes balance is called the steady-state level, and the time it takes for a cell initially containing zero copies of protein X to accumulate half the steady-state level is called the _ŃŇrise time._ѝ Surprisingly, the "rise time" depends on the degradation rate coefficient only. The classic textbook presentation of this topic is found in Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, Boca Raton: Chapman & Hall/CRC, 2007 (p. 18-22).

Subject:
Physical Science
Physics
Material Type:
Lecture Notes
Provider:
Look At Physics
Provider Set:
A Mathematical Way to Think About Biology
Author:
David Liao
Date Added:
10/08/2012
Skateboard Disaster
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine collisions between two skateboards with different masses to learn about conservation of momentum in collisions.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Skeletal System
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this unit, written for an honors anatomy and physiology class, students become familiar with the human skeletal system and answer the Challenge Question: When you get home from school, your mother grabs you, and you race to the hospital. Your grandmother fell and was rushed to the emergency room. The doctor tells your family your grandmother has a fractured hip, and she is referring her to an orthopedic specialist. The orthopedic doctor decides to perform a DEXA scan. The result show her BMD is -3.3. What would be a probable diagnosis to her condition? What are some possible causes of her condition? Should her daughter and granddaughter be worried about this condition, and if so, what are measures they could take to prevent this from happening to them?

Subject:
Engineering
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Morgan R. Evans
Date Added:
09/18/2014
Sliders
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about two types of friction static and kinetic and the equation that governs them. They also measure the coefficient of static friction experimentally.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Sliders (for High School)
Read the Fine Print
Educational Use
Rating
0.0 stars

In this hands-on activity, students learn about two types of friction static and kinetic and the equation that governs them. They also measure the coefficient of static friction and the coefficient of kinetic friction experimentally.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Sprague
Chris Yakacki
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Date Added:
10/14/2015
Sliding and Stuttering
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a spring scale to drag an object such as a ceramic coffee cup along a table top or the floor. The spring scale allows them to measure the frictional force that exists between the moving cup and the surface it slides on. By modifying the bottom surface of the cup, students find out what kinds of surfaces generate more or less friction.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Slinkies as Solenoids
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students use an old fashion children's toy, a metal slinky, to mimic and understand the magnetic field generated in an MRI machine. The metal slinky mimics the magnetic field of a solenoid, which forms the basis for the magnet of the MRI machine. Students run current through the slinky and use computer and calculator software to explore the magnetic field created by the slinky.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014