Students use a tension-compression machine (or an alternative bone-breaking setup) to see …
Students use a tension-compression machine (or an alternative bone-breaking setup) to see how different bones fracture differently and with different amounts of force, depending on their body locations. Teams determine bone mass and volume, calculate bone density, and predict fracture force. Then they each test a small animal bone (chicken, turkey, cat) to failure, examining the break to analyze the fracture type. Groups conduct research about biomedical challenges, materials and repair methods, and design repair treatment plans specific to their bones and fracture types, presenting their design recommendations to the class.
Students are introduced to the challenge question, which revolves around proving that …
Students are introduced to the challenge question, which revolves around proving that a cabinet x-ray system can produce bone mineral density images. Students work independently to generate ideas from the questions provided, then share with partners and then with the class as part of the Multiple Perspectives phase of this unit. Then, as part of the associated activity, students explore multiple websites to gather information about bone mineral density and answer worksheet questions, followed by a quiz on the material covered in the articles.
In their reading from activity 1 of this unit, students should have …
In their reading from activity 1 of this unit, students should have discovered the term "logarithm." It is at this point that they begin their study of logarithms. Specifically, students examine the definition, history and relationship to exponents; they rewrite exponents as logarithms and vice versa, evaluating expressions, solving for a missing piece. Students then study the properties of logarithms (multiplication/addition, division/subtraction, exponents). They complete a set of practice problems to apply the skills they have learned (rewriting logarithms and exponents, evaluating expressions, solving/examining equations for a missing variable.) Then they complete a short quiz covering what they have studied thus far concerning logarithms (problems similar to the practice problems). They consider how what they have learned moves them closer to answering the unit's challenge question.
Students learn about the role engineers and engineering play in repairing severe …
Students learn about the role engineers and engineering play in repairing severe bone fractures. They acquire knowledge about the design and development of implant rods, pins, plates, screws and bone grafts. They learn about materials science, biocompatibility and minimally-invasive surgery.
Students revisit the mathematics required to find bone mineral density, to which …
Students revisit the mathematics required to find bone mineral density, to which they were introduced in lesson 2 of this unit. They learn the equation to find intensity, Beer's law, and how to use it. Then they complete a sheet of practice problems that use the equation.
Students examine an image produced by a cabinet x-ray system to determine …
Students examine an image produced by a cabinet x-ray system to determine if it is a quality bone mineral density image. They write in their journals about what they need to know to be able to make this judgment. Students learn about what bone mineral density is, how a BMD image can be obtained, and how it is related to the x-ray field. Students examine the process used to obtain a BMD image and how this process is related to mathematics, primarily through logarithmic functions. They study the relationship between logarithms and exponents, the properties of logarithms, common and natural logarithms, solving exponential equations and Beer's law.
Student teams design their own booms (bridges) and engage in a friendly …
Student teams design their own booms (bridges) and engage in a friendly competition with other teams to test their designs. Each team strives to design a boom that is light, can hold a certain amount of weight, and is affordable to build. Teams are also assessed on how close their design estimations are to the final weight and cost of their boom "construction." This activity teaches students how to simplify the math behind the risk and estimation process that takes place at every engineering firm prior to the bidding phase when an engineering firm calculates how much money it will take to build the project and then "bids" against other competitors.
This lesson discusses the result of a charge being subject to both …
This lesson discusses the result of a charge being subject to both electric and magnetic fields at the same time. It covers the Hall effect, velocity selector, and the charge to mass ratio. Given several sample problems, students learn to calculate the Hall Voltage dependent upon the width of the plate, the drift velocity, and the strength of the magnetic field. Then students learn to calculate the velocity selector, represented by the ratio of the magnitude of the fields assuming the strength of each field is known. Finally, students proceed through a series of calculations to arrive at the charge to mass ratio. A homework set is included as an evaluation of student progress.
Students examine how different balls react when colliding with different surfaces, giving …
Students examine how different balls react when colliding with different surfaces, giving plenty of opportunity for them to see the difference between elastic and inelastic collisions, learn how to calculate momentum, and understand the principle of conservation of momentum.
In this activity, students examine how different balls react when colliding with …
In this activity, students examine how different balls react when colliding with different surfaces. Also, they will have plenty of opportunity to learn how to calculate momentum and understand the principle of conservation of momentum.
Students learn about stress and strain by designing and building beams using …
Students learn about stress and strain by designing and building beams using polymer clay. They compete to find the best beam strength to beam weight ratio, and learn about the trade-offs engineers make when designing a structure.
Students act as engineers to learn about the strengths of various epoxy-amine …
Students act as engineers to learn about the strengths of various epoxy-amine mixtures and observe the unique characteristics of different mixtures of epoxies and hardeners. Student groups make and optimize thermosets by combining two chemicals in exacting ratios to fabricate the strongest and/or most flexible thermoset possible.
Students work in groups to create soap bubbles on a smooth surface, …
Students work in groups to create soap bubbles on a smooth surface, recording their observations from which they formulate theories to explain what they see (color swirls on the bubble surfaces caused by refraction). Then they apply this theory to thin films in general, including porous films used in biosensors, listing factors that could change the color(s) that become visible to the naked eye, and learn how those factors can be manipulated to give information on gene detection. Finally (by experimentation or video), students see what happens when water is dropped onto the surface of a Bragg mirror.
Students build their own small-scale model roller coasters using pipe insulation and …
Students build their own small-scale model roller coasters using pipe insulation and marbles, and then analyze them using physics principles learned in the associated lesson. They examine conversions between kinetic and potential energy and frictional effects to design roller coasters that are completely driven by gravity. A class competition using different marbles types to represent different passenger loads determines the most innovative and successful roller coasters.
Students create and decorate their own spectrographs using simple materials and holographic …
Students create and decorate their own spectrographs using simple materials and holographic diffraction gratings. A holographic diffraction grating acts like a prism, showing the visual components of light. After building the spectrographs, students observe the spectra of different light sources as homework.
Students learn how to build simple piezoelectric generators to power LEDs. To …
Students learn how to build simple piezoelectric generators to power LEDs. To do this, they incorporate into a circuit a piezoelectric element that converts movements they make (mechanical energy) into electrical energy, which is stored in a capacitor (short-term battery). Once enough energy is stored, they flip a switch to light up an LED. Students also learn how much (surprisingly little) energy can be converted using the current state of technology for piezoelectric materials.
Students create and analyze composite materials with the intent of using the …
Students create and analyze composite materials with the intent of using the materials to construct a structure with optimal strength and minimal density. The composite materials are made of puffed rice cereal, marshmallows and chocolate chips. Student teams vary the concentrations of the three components to create their composite materials. They determine the material density and test its compressive strength by placing weights on it and measuring how much the material compresses. Students graph stress vs. strain and determine Young's modulus to analyze the strength of their materials.
Students design and construct electromagnets that must pick up 10 staples. They …
Students design and construct electromagnets that must pick up 10 staples. They begin with only minimal guidance, and after the basic concept is understood, are informed of the properties that affect the strength of that magnet. They conclude by designing their own electromagnets to complete the challenge of separating scrap steel from scrap aluminum for recycling, and share it with the class.
Students conduct a simple experiment to see how the water level changes …
Students conduct a simple experiment to see how the water level changes in a beaker when a lump of clay sinks in the water and when the same lump of clay is shaped into a bowl that floats in the water. They notice that the floating clay displaces more water than the sinking clay does, perhaps a surprising result. Then they determine the mass of water that is displaced when the clay floats in the water. A comparison of this mass to the mass of the clay itself reveals that they are approximately the same.
In this lesson, students learn that navigational techniques change when people travel …
In this lesson, students learn that navigational techniques change when people travel to different places land, sea, air and in space. For example, an explorer traveling by land uses different methods of navigation than a sailor or an astronaut.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.