Updating search results...

Engineering

1682 affiliated resources

Search Resources

View
Selected filters:
Protect Your Body, Filter Your Water!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experience the steps of the engineering design process as they design solutions for a real-world problem that could affect their health. After a quick review of the treatment processes that municipal water goes through before it comes from the tap, they learn about the still-present measurable contamination of drinking water due to anthropogenic (human-made) chemicals. Substances such as prescription medication, pesticides and hormones are detected in the drinking water supplies of American and European metropolitan cities. Using chlorine as a proxy for estrogen and other drugs found in water, student groups design and test prototype devices that remove the contamination as efficiently and effectively as possible. They use plastic tubing and assorted materials such as activated carbon, cotton balls, felt and cloth to create filters with the capability to regulate water flow to optimize the cleaning effect. They use water quality test strips to assess their success and redesign for improvement. They conclude by writing comprehensive summary design reports.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kristen Billiar
Terri Camesano
Timothy S. Vaillancourt
Date Added:
10/14/2015
Prototype board
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "Prototype board" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Home-made robots" topic area.

Subject:
Electrical engineering
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
09/22/2013
Pump Issues
Rating
0.0 stars

The resource "Pump Issues" is included in the Fluid Power Fundamentals topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Engineering
Mechanical engineering
Date Added:
09/30/2015
Pump It!
Read the Fine Print
Educational Use
Rating
0.0 stars

Pumps are used to get drinking water to our houses every day! And in disaster situations, pumps are essential to keep flood water out. In this hands-on activity, student groups design, build, test and improve devices to pump water as if they were engineers helping a rural village meet their drinking water supply. Students keep track of their materials costs, and calculate power and cost efficiencies of the prototype pumps. They also learn about different types of pumps, how they work and useful applications.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Malinda Schaefer Zarske
Michael A. Soltys
Date Added:
09/18/2014
Pumps
Rating
0.0 stars

The resource "Pumps" is included in the Fluid Power Design/Application topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Engineering
Mechanical engineering
Date Added:
09/30/2015
Pushing It Off a Cliff
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson focuses on the conservation of energy solely between gravitational potential energy and kinetic energy, moving students into the Research and Revise step. Students start out with a virtual laboratory, and then move into the notes and working of problems as a group. A few questions are given as homework. A dry lab focuses on the kinetic and potential energies found on a roller coaster concludes the lesson in the Test Your Mettle phase of the Legacy Cycle.

Subject:
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
Date Added:
09/18/2014
Puttin' It All Together
Read the Fine Print
Educational Use
Rating
0.0 stars

On the topic of energy related to motion, this summary lesson is intended to tie together the concepts introduced in the previous four lessons and show how the concepts are interconnected in everyday applications. A hands-on activity demonstrates this idea and reinforces students' math skills in calculating energy, momentum and frictional forces.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Putting It All Together: Peripheral Vision
Read the Fine Print
Educational Use
Rating
0.0 stars

In this culminating activity of the unit, students bring together everything they've learned in order to write the code to solve the Grand Challenge. The code solution takes two images captured by robots and combines them to create an image that can be focused at different distances, similar to the way that humans can focus either near or far. They write in a derivative of C++ called QT; all code is listed in this activity.

Subject:
Computer Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anna Goncharova
Date Added:
09/18/2014
Python Built-in Functions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This resource is a partial listing of functions used in the course. The resource , ''Python Built-in Functions (doc)'' included in "Lesson 6 Strings Lists and the For-Loop" is a part of "Unit 05 Python Programming" included in Health & Life Sciences HLS - Course 3.

Subject:
Civil engineering
Engineering
Materials science
Mechanical engineering
Material Type:
Lesson
Provider:
Python Software Foundation
Date Added:
03/13/2015
Python Calculus
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze a cartoon of a Rube Goldberg machine and a Python programming language script to practice engineering analysis. In both cases, they study the examples to determine how the different systems operate and the function of each component. This exercise in juxtaposition enables students to see the parallels between a more traditional mechanical engineering design and computer programming. Students also gain practice in analyzing two very different systems to fully understand how they work, similar to how engineers analyze systems and determine how they function and how changes to the system might affect the system.

Subject:
Education
Engineering
Mathematics
Trigonometry
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Scott Burns
Date Added:
09/18/2014
Python Script Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

Working in small groups, students complete and run functioning Python codes. They begin by determining the missing commands in a sample piece of Python code that doubles all the elements of a given input and sums the resulting values. Then students modify more advanced Python code, which numerically computes the slope of a tangent line by finding the slopes of progressively closer secant lines; to this code they add explanatory comments to describe the function of each line of code. This requires students to understand the logic employed in the Python code. Finally, students make modifications to the code in order to find the slopes of tangents to a variety of functions.

Subject:
Education
Engineering
Mathematics
Trigonometry
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Scott Burns
Date Added:
09/18/2014
Quantifying Refraction
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the relevant equations for refraction (index of refraction, Snell's law) and how to use them to predict the behavior of light waves in specified scenarios. After a brief review of the concept of refraction (as learned in the previous lesson), the equations along with their units and variable definitions, are introduced. Student groups work through a few example conceptual and mathematical problems and receive feedback on their work. Then students conduct the associated activity during which they practice using the equations in a problem set, examine data from a porous film like those used in biosensors, and apply the equations they learned to a hypothetical scenario involving biosensors.

Subject:
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
Quantum Dots and Colors
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the physical concept of the colors of rainbows as light energy in the form of waves with distinct wavelengths, but in a different manner than traditional kaleidoscopes. Looking at different quantum dot solutions, they make observations and measurements, and graph their data. They come to understand how nanoparticles interact with absorbing photons to produce colors. They learn the dependence of particle size and color wavelength and learn about real-world applications for using these colorful liquids.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Date Added:
09/18/2014
Quantum Dots and the Harkess Method
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the applications of quantum dots by researching a journal article and answering framing questions used in a classwide discussion. This "Harkness-method" discussion helps students become critical readers of scientific literature.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Date Added:
09/18/2014
Quicksand Danger: Myth or Reality?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the physical science behind the causes of quicksand and become familiar with relationship between concepts such as total stress, pore pressure, and effective stress. Students also relate these concepts to soil liquefaction—a major concern during earthquakes. Students begin the activity by designing a simple device to test the effects of quicksand on materials of different densities and weights. They prototype a support structure that works to prevent a heavy object from sinking into quicksand. At the end of the activity, students reflect on the engineering design process and consider the steps civil engineers take in designing sturdy buildings and other structures.

Subject:
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
David C. Mays
J. Patrick Coughlin
Malinda S. Zarske
Date Added:
12/15/2018
RCL Circuits
Rating
0.0 stars

The resource "RCL Circuits" is included in the AC Circuit Analysis topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Electrical engineering
Engineering
Date Added:
09/30/2015
RC natural response
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "RC natural response" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.

Subject:
Electrical engineering
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Rishi Desai
Date Added:
09/22/2013
RC natural response - derivation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "RC natural response - derivation" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.

Subject:
Electrical engineering
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
04/14/2016
RC natural response - example
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "RC natural response - example" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.

Subject:
Electrical engineering
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
09/22/2013
RC natural response - intuition
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "RC natural response - intuition" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.

Subject:
Electrical engineering
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Monterey Institute for Technology and Education
Sal Khan
Date Added:
09/22/2013