The resource "Magnetism and Electricity" is included in the DC Circuit Analysis …
The resource "Magnetism and Electricity" is included in the DC Circuit Analysis topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.
Students determine the refractive index of a liquid with a simple technique …
Students determine the refractive index of a liquid with a simple technique using a semi-circular hollow block. Then they predict the refractive index of a material (a Pyrex glass tube) by matching it with the known refractive index of a liquid using the percent light transmission measurement. The homemade light intensity detector uses an LED and multimeter, which are relatively inexpensive (and readily available) compared to commercially available measurement instruments.
Students control small electric motors with Arduino microcontrollers to make simple sticky-note …
Students control small electric motors with Arduino microcontrollers to make simple sticky-note spinning fans and then explore other variations of basic motor systems. Through this exercise, students create circuits that include transistors acting as switches. They alter and experiment with given basic motor code, learning about the Arduino analogWrite command and pulse width modulation (PWM). Students learn the motor system nuances that enable them to create their own motor-controlled projects. They are challenged to make their motor systems respond to temperature or light, to control speed with knob or soft potentiometers, and/or make their motors go in reverse (using a motor driver shield or an H-bridge). Electric motors are used extensively in industrial and consumer products and the fundamental principles that students learn can be applied to motors of all shapes and sizes.
Computer-controlled servos enable industrial robots to manufacture everything from vehicles to smartphones. …
Computer-controlled servos enable industrial robots to manufacture everything from vehicles to smartphones. For this maker challenge, students control a simple servo arm by sending commands with their computers to Arduinos using the serial communication protocol. This exercise walks students through the (sometimes) unintuitive nuances of this protocol, so by the end they can directly control the servo position with the computer. Once students master the serial protocol, they are ready to build some suggested interactive projects using the computer or “cut the cord” and get started with wireless Bluetooth or XBee communication.
Students create large-scale models of microfluidic devices using a process similar to …
Students create large-scale models of microfluidic devices using a process similar to that of the PDMS and plasma bonding that is used in the creation of lab-on-a-chip devices. They use disposable foam plates, plastic bendable straws and gelatin dessert mix. After the molds have hardened overnight, they use plastic syringes to inject their model devices with colored fluid to test various flow rates. From what they learn, students are able to answer the challenge question presented in lesson 1 of this unit by writing individual explanation statements.
The goal of this maker challenge is to demystify sensors, in particular …
The goal of this maker challenge is to demystify sensors, in particular the ambient light sensor, and to map its readings visually. In today’s world, we make sense of the environment around us by filling it with sensors, and we use output devices to display real-time data in a meaningful way. Take any smartphone as an example. Aside from the embedded camera and microphone, a number of other sensors collect a wide range of data. Depending upon the model, these sensors may collect data on proximity, motion, ambient light, moisture, compass, and touch. Some of these data are directly visualized through an app, while many operate internally and without a user interface, just below the surface of the screen. In order to become more familiar with the technology that we use (and often take for granted) on a daily basis, your challenge is to assemble a light sensor circuit, observe its readings using the Arduino Serial Monitor, and then create your own unique visualization by interfacing with the Processing software. Students learn how to use calibration and smoothing to capture a better picture of the data. Afterwards, they share their visualizations with the entire class. The time required for this challenge depends on students’ prior knowledge of Arduino and Processing software. Background resources for beginners help students get up to speed on microcontroller hardware and offer additional challenges for intermediate and advanced users.
Students apply sound-activated light-up EL wire to create personalized light-up clothing outfits. …
Students apply sound-activated light-up EL wire to create personalized light-up clothing outfits. During the project, students become familiar with the components, code and logic to complete circuits and employ their imaginations to real-world applications of technology. Acting as if they are engineers, students are challenged to incorporate electroluminescent wire to regular clothing to make attention-getting safety clothing for joggers and cyclists. Luminescent EL wire stays cool, making it ideal to sew into wearable projects. They use the SparkFun sound detector and the EL sequencer circuit board to flash the EL wire to the rhythm of ambient sound, such as music, clapping, talking—or roadway traffic sounds! The combination of sensors, microcontrollers and EL wire enables a wide range of feedback and control options.
Graph theory is a visual way to represent relationships between objects. One …
Graph theory is a visual way to represent relationships between objects. One of the simplest uses of graph theory is a family tree that shows how different people are related. Another application is social networks like Facebook, where a network of "friends" and their "friends" can be represented using graphs. Students learn and apply concepts and methods of graph theory to analyze data for different relationships such as friendships and physical proximity. They are asked about relationships between people and how those relationships can be illustrated. As part of the lesson, students are challenged to find the social graph of their friends. This prepares students for the associated activity during which they simulate and analyze the spread of disease using graph theory by assuming close proximity to an infected individual causes the disease to spread.
Do you have a passion for buildings and want to contribute to …
Do you have a passion for buildings and want to contribute to a sustainable environment? Then this is your chance to make a difference! The biggest sustainability challenge for cities worldwide is adapting existing obsolescent buildings and making them future-proof. In this course, you will learn about adapting buildings for sustainability.
This course first introduces you to the challenging management task of redeveloping buildings for future use. Then you will learn how different management tools can be used to convert old buildings for sustainable reuse.
Prior experience with studies or jobs related to the built environment is not essential for this course, but will be a great advantage.
This MOOC is especially relevant for students who are interested in Real Estate, Project Management, Urban Planning, Architecture, Construction, Engineering, and Sustainability.
The course is taught by a multi-disciplinary team of instructors and professors with relevant practical and theoretical experience. You can use the practical knowledge you obtain during this course to tackle many challenges related to the built environment.
The resource "Manual and Automatic Mode PLC Ladder Logic" is included in …
The resource "Manual and Automatic Mode PLC Ladder Logic" is included in the Programmable Logic Controllers topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.
Based on their experience exploring the Mars rover Curiosity and learning about …
Based on their experience exploring the Mars rover Curiosity and learning about what engineers must go through to develop a vehicle like Curiosity, students create Android apps that can control LEGO MINDSTORMS(TM) NXT robots, simulating the difficulties the Curiosity rover could encounter. The activity goal is to teach students programming design and programming skills using MIT's App Inventor software as the vehicle for the learning. The (free to download) App Inventor program enables Android apps to be created using building blocks without having to actually know a programming language. At activity end, students are ready to apply what they learn to write other applications for Android devices.
Students learn about slope, determining slope, distance vs. time graphs through a …
Students learn about slope, determining slope, distance vs. time graphs through a motion-filled activity. Working in teams with calculators and CBL motion detectors, students attempt to match the provided graphs and equations with the output from the detector displayed on their calculators.
De student die dit vak met goed gevolg heeft doorlopen zal in …
De student die dit vak met goed gevolg heeft doorlopen zal in staat zijn om: (1) Op basis van eigenschappen en gedrag onder externe invloeden een klassificatie te maken van materialen en op basis daarvan een eerste indruk te krijgen van hun geschiktheid in bepaalde toepassingen. (2) Inzicht te verkrijgen in de rol van materialen, materiaalgebruik en materiaalontwikkeling in de ontwikkeling, kwaliteit, mogelijkheden en bedreigingen van de samenleving afhankelijk van tijd, plaats en cultuur. Dit inzicht is gebaseerd op objectieve data. (3) Vast te stellen welke materiaaleigenschappen van kritisch belang zijn in mechanische en andere werktuigbouwkundige ontwerpen, en met behulp van eenduidige criteria materiaalkeuzes in de ontwerpcriteria van constructies te optimaliseren. De belangrijkste eigenschappen die aan de orde komen zijn dichtheid, stijfheid, sterkte, plasticiteit, breuk, vermoeiing, wrijving, slijtage. (4) Mechanische eigenschappen van materialen te herleiden tot chemische bindingen, onderlinge krachten, ordeningspatronen, defecten, en relatieve bewegingsmogelijkheden van atomen. De verschillende lengteschalen die materiaaleigenschappen bepalen staan hierbij centraal. Hiermee zal tevens inzicht verkregen worden in de mogelijkheden en beperkingen van materialen onder extreme omstandigheden en in de strategieën die gevolgd kunnen worden om materialen te verbeteren. (5) Optimale keuzes te maken binnen het beschikbare spectrum van procestechnieken (productie, bewerking, vorming, verbinding, afwerking) om componenten en eindproducten te vervaardigen. (6) Software te gebruiken waarmee, gegeven een aantal vereisten van materiaaleigenschappen, het beste materiaal voor een ontwerp kan worden geselecteerd. Deze materiaaleigenschappen gaan verder dan mechanische eigenschappen alleen. Thermische, elektrische, ecologische, economische en recycling-eigenschappen zullen in voorkomende gevallen ook meegewogen worden.
The resource "Math block" is included in the "Electrical engineering" course from …
The resource "Math block" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Lego robotics" topic area.
The resource "Math block" is included in the "Electrical engineering" course from …
The resource "Math block" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Lego robotics" topic area.
How do populations grow? How do viruses spread? What is the trajectory …
How do populations grow? How do viruses spread? What is the trajectory of a glider?
Many real-life problems can be described and solved by mathematical models. In this course, you will form a team with another student and work in a project to solve a real-life problem.
You will learn to analyze your chosen problem, formulate it as a mathematical model (containing ordinary differential equations), solve the equations in the model, and validate your results. You will learn how to implement Euler’s method in a Python program.
If needed, you can refine or improve your model, based on your first results. Finally, you will learn how to report your findings in a scientific way.
This course is mainly aimed at Bachelor students from Mathematics, Engineering and Science disciplines. However it will suit anyone who would like to learn how mathematical modeling can solve real-world problems.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.