Updating search results...

Search Resources

12 Results

View
Selected filters:
  • electromagnetic-spectrum
Catching the Perfect SAR Waves!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the importance of the Pythagorean theorem as applied in radar imaging. They use a sensor unit with IRED (infrared emitting diode) to measure triangle distances and the theorem to calculate and verify distances. Student groups calibrate the sensor units to ensure accurate distance measurements. A "pretend" outdoor radar imaging model is provided to groups for sensor unit testing.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Luis Avila
Mounir Ben Ghalia
Date Added:
10/14/2015
Designing a Spectroscopy Mission
Read the Fine Print
Educational Use
Rating
0.0 stars

Students find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, student teams design and build their own spectrographs, researching and designing a ground- or space-based mission using their creation. At project end, teams present their findings to the class, as if they were making an engineering conference presentation. Student must have completed the associated Building a Fancy Spectrograph activity before attempting this activity.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Electromagnetic Radiation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a hypothetical scenario that delivers the unit's Grand Challenge Question: To apply an understanding of nanoparticles to treat, detect and protect against skin cancer. Towards finding a solution, they begin the research phase by investigating the first research question: What is electromagnetic energy? Students learn about the electromagnetic spectrum, ultraviolet radiation (including UVA, UVB and UVC rays), photon energy, the relationship between wave frequency and energy (c = λν), as well as about the Earth's ozone-layer protection and that nanoparticles are being used for medical applications. The lecture material also includes information on photo energy and the dual particle/wave model of light. Students complete a problem set to calculate frequency and energy.

Subject:
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Electromagnetic Waves: How Do Sunglasses Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the scientific and mathematical concepts around electromagnetic light properties that enable the engineering of sunglasses for eye protection. They compare and contrast tinted and polarized lenses as well as learn about light intensity and how different mediums reduce the intensities of various electromagnetic radiation wavelengths. Through a PowerPoint® presentation, students learn about light polarization, transmission, reflection, intensity, attenuation, and Malus’ law. A demo using two slinky springs helps to illustrate wave disturbances and different-direction polarizations. As a mini-activity, students manipulate slide-mounted polarizing filters to alter light intensity and see how polarization by transmission works. Students use the Malus’ law equation to calculate the transmitted light intensity and learn about Brewster’s angle. Two math problem student handouts are provided. Students also brainstorm ideas on how sunglasses could be designed and improved, which prepares them for the associated hands-on design/build activity.

Subject:
Engineering
Physical Science
Physics
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Adam Alster
Drew Kim
Quan Tran
Date Added:
05/30/2018
Exploiting Polarization: Designing More Effective Sunglasses
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply what they know about light polarization and attenuation (learned in the associated lesson) to design, build, test, refine and then advertise their prototypes for more effective sunglasses. Presented as a hypothetical design scenario, students act as engineers who are challenged to create improved sunglasses that reduce glare and lower light intensity while increasing eye protection from UVA and UVB radiation compared to an existing model of sunglasses—and make them as inexpensive as possible. They use a light meter to measure and compare light intensities through the commercial sunglasses and their prototype lenses. They consider the project requirements and constraints in their designs. They brainstorm and evaluate possible design ideas. They keep track of materials costs. They create and present advertisements to the class that promote the sunglasses benefits, using collected data to justify their claims. A grading rubric and reflection handout are provided.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Adam Alster
Drew Kim
Quan Tran
Date Added:
05/30/2018
Exploring the Electromagnetic Spectrum
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basics of the electromagnetic spectrum and how various types of electromagnetic waves are related in terms of wavelength and energy. In addition, they are introduced to the various types of waves that make up the electromagnetic spectrum including, radio waves, ultraviolet waves, visible light and infrared waves. These topics help inform students before they turn to designing solutions to an overarching engineering challenge question.

Subject:
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Ellen Zielinski
Date Added:
09/18/2014
Lab Research to Engineer a Phosphorescent Bioplastic
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain first-hand experience with the steps of the scientific method as well as the overarching engineering design process as they conduct lab research with the aim to create a bioplastic with certain properties. Students learn about the light mechanism that causes ultraviolet bead color change, observe the effect of different light waves on a phosphorescence powder, and see the connection between florescence, phosphorescence and wavelength. Students compose hypotheses and determine experimental procedure details, as teams engineer variations on a bioplastic solid embedded with phosphorescence powder. The objective is to make a structurally sound bioplastic without reducing its glowing properties from the powder embedded within its matrix. Groups conduct qualitative and quantitative analyses of their engineered plastics, then recap and communicate their experiment conclusions in the form of a poster, slides and verbal presentation. As an extension, teams make their own testing apparatuses. As a further extension, they combine all the group results to determine which bioplastic matrix best achieves the desired properties and then “manufacture” the optimum bioplastic into glowing toy figurine end products! Many handouts, instructions, photos and rubrics are provided.

Subject:
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Jamie Sorrell
Michael Hipp
Date Added:
09/23/2017
Light It Up
Read the Fine Print
Educational Use
Rating
0.0 stars

Through an introduction to the design of lighting systems and the electromagnetic spectrum, students learn about the concept of daylighting as well as two types of light bulbs (lamps) often used in energy-efficient lighting design.

Subject:
Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Janet Yowell
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Light Up Your Life
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the correct technical vocabulary for lighting, which is different than layperson's terms. They learn about lamp (light bulb) technology and how to identify the various types of lighting in their spaces. They are also introduced to lighting controls as a means for saving energy- reducing costs, human energy consumption, and greenhouse gas emissions on the environment. Using an accompanying worksheet, students embark on a guided audit in which they survey the lighting in their classroom and identify the potential savings from using controls.

Subject:
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Darcie Chinnis
Janet Yowell
Date Added:
09/18/2014
Physics (PHYS 100 Non Science Majors)
Unrestricted Use
CC BY
Rating
0.0 stars

This is a course for non-science majors that is a survey of the central concepts in physics relating everyday experiences with the principles and laws in physics on a conceptual level. Upon successful completion of this course, students will be able to: Describe basic principles of motion and state the law of inertia; Predict the motion of an object by applying Newtonęs laws when given the mass, a force, the characteristics of motion and a duration of time; Summarize the law of conservation of energy and explain its importance as the fundamental principle of energy as a –law of nature”; Explain the use of the principle of Energy conservation when applied to simple energy transformation systems; Define the Conservation of Energy Law as the 1st Law of Thermodynamics and State 2nd Law of Thermodynamics in 3 ways; Outline the limitations and risks associated with current societal energy practices,and explore options for changes in energy policy for the next century and beyond; Describe physical aspects of waves and wave motion; and explain the production of electromagnetic waves, and distinguish between the different parts of the electromagnetic spectrum.

Subject:
Physical Science
Physics
Material Type:
Assessment
Full Course
Reading
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
01/13/2021
Psychology
Unrestricted Use
CC BY
Rating
0.0 stars

Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan

Subject:
Psychology
Social and Behavioral Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
02/12/2021