We are so used to some things that we stopped wondering about …
We are so used to some things that we stopped wondering about them. Like light. What is light? Some kind of wavy thing, right? Kind of. The video "What Is Light?" is a resource included in the Physics topic made available from the Kurzgesagt open educational resource series.
Students begin to explore the idea of a force. To further their …
Students begin to explore the idea of a force. To further their understanding of drag, gravity and weight, they conduct activities that model the behavior of parachutes and helicopters. An associated literacy activity engages the class to recreate the Wright brothers' first flight in the style of the "You Are There" television series.
As a part of the research and revise step of the Legacy …
As a part of the research and revise step of the Legacy Cycle, this lesson provides students with information they will need later on to be able to average pixels to simulate blurring in the peripheral plane of vision. Students learn why image color becomes important as we distort the outer boundaries of an image and have to interpolate pixels to fill in gaps created from our algorithm. Students learn what a digital image is, what pixels are, and how to convert between RGB and hexadecimal values.
Students learn about friction and drag two different forces that convert energy …
Students learn about friction and drag two different forces that convert energy of motion to heat. Both forces can act on a moving object and decrease its velocity. Students learn examples of friction and drag, and suggest ways to reduce the impact of these forces. The equation that governs common frictional forces is introduced, and during a hands-on activity, students experimentally measure a coefficient of friction.
Students measure the wavelength of sounds and learn basic vocabulary associated with …
Students measure the wavelength of sounds and learn basic vocabulary associated with waves. As a class, they brainstorm the difference between two tuning forks and the sounds they produce. Then they come up with a way to measure that difference. Using a pipe in a graduated cylinder filled with water, students measure the wavelength of various tuning forks by finding the height the pipe must be held at to produce the loudest note. After calculating the wavelength and comparing it to the pitch of each tuning fork, students discover the relationship between wavelength and pitch.
In the first half of this two-part activity, students practice solving problems …
In the first half of this two-part activity, students practice solving problems involving refraction using the index of refraction and Snell's law equations; they mathematically solve for precise angles and speeds caused by refraction. In the second half of the activity, a hands-on lab, they apply the analytical skills required by the problem set to reflectance measurements of porous silicon thin films, including how reflectance measurements would change if various aspects of the film were altered. Students predict the data output in the form of reflectance measurements when samples are altered, which connects to the idea of being able to make predictions about the data output of a biosensing thin film that couples with a target molecule.
Global wind patterns are dictated by the movement of the Earth on …
Global wind patterns are dictated by the movement of the Earth on its axis and are significant factors in determining the climate for regions of the planet. Students learn how the Coriolis effect and Hadley convection cells determine the location of deserts on Earth. They manipulate inflated plastic globes to discover how the Coriolis effect drives wind clockwise in the Northern Hemisphere and counterclockwise in the Southern Hemisphere. Then they incorporate latitudinal differences onto this modeling exercise to understand why deserts form at 30 degrees north and south of the equator. Once students understand the importance of global winds, they discuss hydropower in the desert. They compare and contrast two case studies: China’s Three Gorges Dam, and Chile’s proposed plant in the Atacama Desert that would creatively use solar power to move seawater up to the top of a mountain so that it can flow back down and generate power. Students note the economic, environmental, cultural and social impacts, issues and benefits of both power plants. Then they reflect, write, debate and discuss their ideas and opinions using evidence from the case studies and their own research.
Through this activity, Bernoulli's principle as it relates to winged flight is …
Through this activity, Bernoulli's principle as it relates to winged flight is demonstrated. Student pairs use computers and an online virtual wind tunnel to see the influence of camber and airfoil angle of attack on lift. Activity and math worksheets are provided.
From remote-controlled cars, to sensors relaying agricultural data from a field to …
From remote-controlled cars, to sensors relaying agricultural data from a field to farmhouses miles away, wireless communication enables users to “cut the cord” for their projects. For this maker challenge, students apply what they learned about serial communication during the previous Arduino maker challenge (Make and Control a Servo Arm with Your Computer) and learn how to send signals from one system to another using XBee radio communication modules. By activity end, expect students to be able to control LEDs and motors wirelessly using Arduino microcontrollers and XBee shields. This is a great activity for students to explore and come to understand the concept of the Internet of things.
Students follow a step-by-step process to solve simple free-body diagrams. They identify …
Students follow a step-by-step process to solve simple free-body diagrams. They identify forces acting in the x or y direction in interactive exercises.
The learner reads directions for finding the slope, intercept, and correlation coefficient …
The learner reads directions for finding the slope, intercept, and correlation coefficient for a group of ordered pairs using one of eight different scientific calculators.
Students will observe two vehicles moving across the screen at different rates. …
Students will observe two vehicles moving across the screen at different rates. They will describe the motion in their own words and then attempt to select the corresponding graphs of distance vs. time, velocity vs. time, and acceleration vs. time for each vehicle.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.