Students experience the steps of the engineering design process as they design …
Students experience the steps of the engineering design process as they design solutions for a real-world problem that could affect their health. After a quick review of the treatment processes that municipal water goes through before it comes from the tap, they learn about the still-present measurable contamination of drinking water due to anthropogenic (human-made) chemicals. Substances such as prescription medication, pesticides and hormones are detected in the drinking water supplies of American and European metropolitan cities. Using chlorine as a proxy for estrogen and other drugs found in water, student groups design and test prototype devices that remove the contamination as efficiently and effectively as possible. They use plastic tubing and assorted materials such as activated carbon, cotton balls, felt and cloth to create filters with the capability to regulate water flow to optimize the cleaning effect. They use water quality test strips to assess their success and redesign for improvement. They conclude by writing comprehensive summary design reports.
The resource "Prototype board" is included in the "Electrical engineering" course from …
The resource "Prototype board" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Home-made robots" topic area.
The resource "Pump Issues" is included in the Fluid Power Fundamentals topic …
The resource "Pump Issues" is included in the Fluid Power Fundamentals topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.
Pumps are used to get drinking water to our houses every day! …
Pumps are used to get drinking water to our houses every day! And in disaster situations, pumps are essential to keep flood water out. In this hands-on activity, student groups design, build, test and improve devices to pump water as if they were engineers helping a rural village meet their drinking water supply. Students keep track of their materials costs, and calculate power and cost efficiencies of the prototype pumps. They also learn about different types of pumps, how they work and useful applications.
The resource "Pumps" is included in the Fluid Power Design/Application topic of …
The resource "Pumps" is included in the Fluid Power Design/Application topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.
This lesson focuses on the conservation of energy solely between gravitational potential …
This lesson focuses on the conservation of energy solely between gravitational potential energy and kinetic energy, moving students into the Research and Revise step. Students start out with a virtual laboratory, and then move into the notes and working of problems as a group. A few questions are given as homework. A dry lab focuses on the kinetic and potential energies found on a roller coaster concludes the lesson in the Test Your Mettle phase of the Legacy Cycle.
On the topic of energy related to motion, this summary lesson is …
On the topic of energy related to motion, this summary lesson is intended to tie together the concepts introduced in the previous four lessons and show how the concepts are interconnected in everyday applications. A hands-on activity demonstrates this idea and reinforces students' math skills in calculating energy, momentum and frictional forces.
In this culminating activity of the unit, students bring together everything they've …
In this culminating activity of the unit, students bring together everything they've learned in order to write the code to solve the Grand Challenge. The code solution takes two images captured by robots and combines them to create an image that can be focused at different distances, similar to the way that humans can focus either near or far. They write in a derivative of C++ called QT; all code is listed in this activity.
This resource is a partial listing of functions used in the course. …
This resource is a partial listing of functions used in the course. The resource , ''Python Built-in Functions (doc)'' included in "Lesson 6 Strings Lists and the For-Loop" is a part of "Unit 05 Python Programming" included in Health & Life Sciences HLS - Course 3.
Students analyze a cartoon of a Rube Goldberg machine and a Python …
Students analyze a cartoon of a Rube Goldberg machine and a Python programming language script to practice engineering analysis. In both cases, they study the examples to determine how the different systems operate and the function of each component. This exercise in juxtaposition enables students to see the parallels between a more traditional mechanical engineering design and computer programming. Students also gain practice in analyzing two very different systems to fully understand how they work, similar to how engineers analyze systems and determine how they function and how changes to the system might affect the system.
Working in small groups, students complete and run functioning Python codes. They …
Working in small groups, students complete and run functioning Python codes. They begin by determining the missing commands in a sample piece of Python code that doubles all the elements of a given input and sums the resulting values. Then students modify more advanced Python code, which numerically computes the slope of a tangent line by finding the slopes of progressively closer secant lines; to this code they add explanatory comments to describe the function of each line of code. This requires students to understand the logic employed in the Python code. Finally, students make modifications to the code in order to find the slopes of tangents to a variety of functions.
Students learn the relevant equations for refraction (index of refraction, Snell's law) …
Students learn the relevant equations for refraction (index of refraction, Snell's law) and how to use them to predict the behavior of light waves in specified scenarios. After a brief review of the concept of refraction (as learned in the previous lesson), the equations along with their units and variable definitions, are introduced. Student groups work through a few example conceptual and mathematical problems and receive feedback on their work. Then students conduct the associated activity during which they practice using the equations in a problem set, examine data from a porous film like those used in biosensors, and apply the equations they learned to a hypothetical scenario involving biosensors.
Students are introduced to the physical concept of the colors of rainbows …
Students are introduced to the physical concept of the colors of rainbows as light energy in the form of waves with distinct wavelengths, but in a different manner than traditional kaleidoscopes. Looking at different quantum dot solutions, they make observations and measurements, and graph their data. They come to understand how nanoparticles interact with absorbing photons to produce colors. They learn the dependence of particle size and color wavelength and learn about real-world applications for using these colorful liquids.
Students explore the applications of quantum dots by researching a journal article …
Students explore the applications of quantum dots by researching a journal article and answering framing questions used in a classwide discussion. This "Harkness-method" discussion helps students become critical readers of scientific literature.
Students explore the physical science behind the causes of quicksand and become …
Students explore the physical science behind the causes of quicksand and become familiar with relationship between concepts such as total stress, pore pressure, and effective stress. Students also relate these concepts to soil liquefaction—a major concern during earthquakes. Students begin the activity by designing a simple device to test the effects of quicksand on materials of different densities and weights. They prototype a support structure that works to prevent a heavy object from sinking into quicksand. At the end of the activity, students reflect on the engineering design process and consider the steps civil engineers take in designing sturdy buildings and other structures.
The resource "RCL Circuits" is included in the AC Circuit Analysis topic …
The resource "RCL Circuits" is included in the AC Circuit Analysis topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.
The resource "RC natural response" is included in the "Electrical engineering" course …
The resource "RC natural response" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.
The resource "RC natural response - derivation" is included in the "Electrical …
The resource "RC natural response - derivation" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.
The resource "RC natural response - example" is included in the "Electrical …
The resource "RC natural response - example" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.
The resource "RC natural response - intuition" is included in the "Electrical …
The resource "RC natural response - intuition" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.