Updating search results...

Search Resources

1682 Results

View
Selected filters:
  • Engineering
Magnetism and Electricity
Rating
0.0 stars

The resource "Magnetism and Electricity" is included in the DC Circuit Analysis topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Electrical engineering
Engineering
Date Added:
09/30/2015
Make That Invisible! Refractive Index Matching
Read the Fine Print
Educational Use
Rating
0.0 stars

Students determine the refractive index of a liquid with a simple technique using a semi-circular hollow block. Then they predict the refractive index of a material (a Pyrex glass tube) by matching it with the known refractive index of a liquid using the percent light transmission measurement. The homemade light intensity detector uses an LED and multimeter, which are relatively inexpensive (and readily available) compared to commercially available measurement instruments.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marjorie Hernandez
Date Added:
09/18/2014
Make a Sticky-Note Fan with Arduino
Read the Fine Print
Educational Use
Rating
0.0 stars

Students control small electric motors with Arduino microcontrollers to make simple sticky-note spinning fans and then explore other variations of basic motor systems. Through this exercise, students create circuits that include transistors acting as switches. They alter and experiment with given basic motor code, learning about the Arduino analogWrite command and pulse width modulation (PWM). Students learn the motor system nuances that enable them to create their own motor-controlled projects. They are challenged to make their motor systems respond to temperature or light, to control speed with knob or soft potentiometers, and/or make their motors go in reverse (using a motor driver shield or an H-bridge). Electric motors are used extensively in industrial and consumer products and the fundamental principles that students learn can be applied to motors of all shapes and sizes.

Subject:
Computer Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Daniel Godrick
Date Added:
10/27/2017
Make and Control a Servo Arm with Your Computer
Read the Fine Print
Educational Use
Rating
0.0 stars

Computer-controlled servos enable industrial robots to manufacture everything from vehicles to smartphones. For this maker challenge, students control a simple servo arm by sending commands with their computers to Arduinos using the serial communication protocol. This exercise walks students through the (sometimes) unintuitive nuances of this protocol, so by the end they can directly control the servo position with the computer. Once students master the serial protocol, they are ready to build some suggested interactive projects using the computer or “cut the cord” and get started with wireless Bluetooth or XBee communication.

Subject:
Computer Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Daniel Godrick
Date Added:
02/28/2018
Making Decisions: Packaging and the Environment
Read the Fine Print
Educational Use
Rating
0.0 stars

Students redesign and justify the packaging used in consumer products. Design criteria include reducing the amount of packaging material by 25%.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
K. M. Samuelson
Martha Cyr
Date Added:
09/18/2014
Making Model Microfluidic Devices Using JELL-O
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create large-scale models of microfluidic devices using a process similar to that of the PDMS and plasma bonding that is used in the creation of lab-on-a-chip devices. They use disposable foam plates, plastic bendable straws and gelatin dessert mix. After the molds have hardened overnight, they use plastic syringes to inject their model devices with colored fluid to test various flow rates. From what they learn, students are able to answer the challenge question presented in lesson 1 of this unit by writing individual explanation statements.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michelle Woods
Date Added:
09/18/2014
Making Sense of Sensors: Visualizing Sensor Data
Read the Fine Print
Educational Use
Rating
0.0 stars

The goal of this maker challenge is to demystify sensors, in particular the ambient light sensor, and to map its readings visually. In today’s world, we make sense of the environment around us by filling it with sensors, and we use output devices to display real-time data in a meaningful way. Take any smartphone as an example. Aside from the embedded camera and microphone, a number of other sensors collect a wide range of data. Depending upon the model, these sensors may collect data on proximity, motion, ambient light, moisture, compass, and touch. Some of these data are directly visualized through an app, while many operate internally and without a user interface, just below the surface of the screen. In order to become more familiar with the technology that we use (and often take for granted) on a daily basis, your challenge is to assemble a light sensor circuit, observe its readings using the Arduino Serial Monitor, and then create your own unique visualization by interfacing with the Processing software. Students learn how to use calibration and smoothing to capture a better picture of the data. Afterwards, they share their visualizations with the entire class. The time required for this challenge depends on students’ prior knowledge of Arduino and Processing software. Background resources for beginners help students get up to speed on microcontroller hardware and offer additional challenges for intermediate and advanced users.

Subject:
Computer Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Andrew Rose
Date Added:
11/13/2018
Making Sound-Reactive Clothing
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply sound-activated light-up EL wire to create personalized light-up clothing outfits. During the project, students become familiar with the components, code and logic to complete circuits and employ their imaginations to real-world applications of technology. Acting as if they are engineers, students are challenged to incorporate electroluminescent wire to regular clothing to make attention-getting safety clothing for joggers and cyclists. Luminescent EL wire stays cool, making it ideal to sew into wearable projects. They use the SparkFun sound detector and the EL sequencer circuit board to flash the EL wire to the rhythm of ambient sound, such as music, clapping, talking—or roadway traffic sounds! The combination of sensors, microcontrollers and EL wire enables a wide range of feedback and control options.

Subject:
Computer Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Jen Foxbot
Kent Kurashima
Rachel Sharpe
Sabina Schill
Date Added:
02/13/2018
Making the Connection
Read the Fine Print
Educational Use
Rating
0.0 stars

Graph theory is a visual way to represent relationships between objects. One of the simplest uses of graph theory is a family tree that shows how different people are related. Another application is social networks like Facebook, where a network of "friends" and their "friends" can be represented using graphs. Students learn and apply concepts and methods of graph theory to analyze data for different relationships such as friendships and physical proximity. They are asked about relationships between people and how those relationships can be illustrated. As part of the lesson, students are challenged to find the social graph of their friends. This prepares students for the associated activity during which they simulate and analyze the spread of disease using graph theory by assuming close proximity to an infected individual causes the disease to spread.

Subject:
Engineering
Mathematics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Steve Hamersky
Date Added:
09/18/2014
Managing Building Adaptation: a Sustainable Approach
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Do you have a passion for buildings and want to contribute to a sustainable environment? Then this is your chance to make a difference! The biggest sustainability challenge for cities worldwide is adapting existing obsolescent buildings and making them future-proof. In this course, you will learn about adapting buildings for sustainability.

This course first introduces you to the challenging management task of redeveloping buildings for future use. Then you will learn how different management tools can be used to convert old buildings for sustainable reuse.

Prior experience with studies or jobs related to the built environment is not essential for this course, but will be a great advantage.

This MOOC is especially relevant for students who are interested in Real Estate, Project Management, Urban Planning, Architecture, Construction, Engineering, and Sustainability.

The course is taught by a multi-disciplinary team of instructors and professors with relevant practical and theoretical experience. You can use the practical knowledge you obtain during this course to tackle many challenges related to the built environment.

Subject:
Architectural engineering
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Erwin Heurkens
Gerard van Bortel
Hilde Remoy
Jelle Koolwijk
John Heints
Date Added:
01/12/2021
Manual and Automatic Mode PLC Ladder Logic
Rating
0.0 stars

The resource "Manual and Automatic Mode PLC Ladder Logic" is included in the Programmable Logic Controllers topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Engineering
Mechanical engineering
Date Added:
09/30/2015
Mars Rover App Creation
Read the Fine Print
Educational Use
Rating
0.0 stars

Based on their experience exploring the Mars rover Curiosity and learning about what engineers must go through to develop a vehicle like Curiosity, students create Android apps that can control LEGO MINDSTORMS(TM) NXT robots, simulating the difficulties the Curiosity rover could encounter. The activity goal is to teach students programming design and programming skills using MIT's App Inventor software as the vehicle for the learning. The (free to download) App Inventor program enables Android apps to be created using building blocks without having to actually know a programming language. At activity end, students are ready to apply what they learn to write other applications for Android devices.

Subject:
Computer Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Rich Powers
Date Added:
09/18/2014
Matching the Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about slope, determining slope, distance vs. time graphs through a motion-filled activity. Working in teams with calculators and CBL motion detectors, students attempt to match the provided graphs and equations with the output from the detector displayed on their calculators.

Subject:
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey McKelvey
Date Added:
09/18/2014
Materiaalkunde 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

De student die dit vak met goed gevolg heeft doorlopen zal in staat zijn om: (1) Op basis van eigenschappen en gedrag onder externe invloeden een klassificatie te maken van materialen en op basis daarvan een eerste indruk te krijgen van hun geschiktheid in bepaalde toepassingen. (2) Inzicht te verkrijgen in de rol van materialen, materiaalgebruik en materiaalontwikkeling in de ontwikkeling, kwaliteit, mogelijkheden en bedreigingen van de samenleving afhankelijk van tijd, plaats en cultuur. Dit inzicht is gebaseerd op objectieve data. (3) Vast te stellen welke materiaaleigenschappen van kritisch belang zijn in mechanische en andere werktuigbouwkundige ontwerpen, en met behulp van eenduidige criteria materiaalkeuzes in de ontwerpcriteria van constructies te optimaliseren. De belangrijkste eigenschappen die aan de orde komen zijn dichtheid, stijfheid, sterkte, plasticiteit, breuk, vermoeiing, wrijving, slijtage. (4) Mechanische eigenschappen van materialen te herleiden tot chemische bindingen, onderlinge krachten, ordeningspatronen, defecten, en relatieve bewegingsmogelijkheden van atomen. De verschillende lengteschalen die materiaaleigenschappen bepalen staan hierbij centraal. Hiermee zal tevens inzicht verkregen worden in de mogelijkheden en beperkingen van materialen onder extreme omstandigheden en in de strategieën die gevolgd kunnen worden om materialen te verbeteren. (5) Optimale keuzes te maken binnen het beschikbare spectrum van procestechnieken (productie, bewerking, vorming, verbinding, afwerking) om componenten en eindproducten te vervaardigen. (6) Software te gebruiken waarmee, gegeven een aantal vereisten van materiaaleigenschappen, het beste materiaal voor een ontwerp kan worden geselecteerd. Deze materiaaleigenschappen gaan verder dan mechanische eigenschappen alleen. Thermische, elektrische, ecologische, economische en recycling-eigenschappen zullen in voorkomende gevallen ook meegewogen worden.

Subject:
Engineering
Material Type:
Assessment
Lecture
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof. dr. B.J. (Barend) Thijsse
Date Added:
01/12/2021
Math block
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "Math block" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Lego robotics" topic area.

Subject:
Electrical engineering
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
09/22/2013
Math block- Light guitar
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "Math block" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Lego robotics" topic area.

Subject:
Electrical engineering
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
09/22/2013
Mathematical Modeling Basics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How do populations grow? How do viruses spread? What is the trajectory of a glider?

Many real-life problems can be described and solved by mathematical models. In this course, you will form a team with another student and work in a project to solve a real-life problem.

You will learn to analyze your chosen problem, formulate it as a mathematical model (containing ordinary differential equations), solve the equations in the model, and validate your results. You will learn how to implement Euler’s method in a Python program.

If needed, you can refine or improve your model, based on your first results. Finally, you will learn how to report your findings in a scientific way.

This course is mainly aimed at Bachelor students from Mathematics, Engineering and Science disciplines. However it will suit anyone who would like to learn how mathematical modeling can solve real-world problems.

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof.dr.ir. C. Vuik
dr.ir. M. Keijzer
Date Added:
01/12/2021