Mr. Andersen shows you how to read a position vs. time graph …
Mr. Andersen shows you how to read a position vs. time graph to determine the velocity of an object. Objects that are accelerating are covered in this podcast. He also introduces the tangent line (or the magic pen).
In this video Paul Andersen explains how all objects contain positive and …
In this video Paul Andersen explains how all objects contain positive and negative charge. Neutral objects contain an equal amount of positive and negative charges. Charged objects have more positive or negative charges. Like charges repel and unlike charges attract. Neutral objects can be polarized and cause attraction.
Paul Andersen explains how conservative forces can be used to store potential …
Paul Andersen explains how conservative forces can be used to store potential energy in an object or a system. The work done is equal to the amount of potential energy in the object. The following conservative forces are described; gravitational, spring and electric force.
Mr. Andersen explains the difference between potential and kinetic gravitational energy. He …
Mr. Andersen explains the difference between potential and kinetic gravitational energy. He also uses physics to calculate the energy in various objects.
Students use balloons (a polymer) to explore preconditioning a viscoelastic material behavior …
Students use balloons (a polymer) to explore preconditioning a viscoelastic material behavior that is important to understand when designing biomedical devices. They improve their understanding of preconditioning by measuring the force needed to stretch a balloon to the same displacement multiple times. Students gain experience in data collection and graph interpretation.
After heuristically deriving Stirling's approximation in the first video segment, we outline …
After heuristically deriving Stirling's approximation in the first video segment, we outline a simple example of the central limit theorem for the case of the binomial distribution. In the final segment, we explain how the central limit theorem is used to suggest that physical experiments are characterized by normally-distributed (Gaussian) fluctuations while fluctuations in biological experiments are said to fill out log-normal distributions.
In the first video segment, we study the distribution, average, and variance …
In the first video segment, we study the distribution, average, and variance for the Bernoulli coin-toss process. The binomial distribution results from stringing together a series of coin tosses. In the second segment, we study the limit of "rare" events, which is described by the Poisson distribution.
1. Introduction to Process Intensification (PI): - sustainability-related issues in process industry; …
1. Introduction to Process Intensification (PI): - sustainability-related issues in process industry; - definitions of Process Intensification; - fundamental principles and approaches of PI.
2. How to design a sustainable, inherently safer processing plant - presentation of PI case study assignments.
3. PI Approaches: - STRUCTURE - PI approach in spatial domain (incl. "FOCUS ON" guest lecture) - ENERGY - PI approach in thermodynamic domain - SYNERGY - PI approach in functional domain - TIME - PI approach in temporal domain Study Goals Basic knowledge in Process Intensification
Students watch video clips from October Sky and Harry Potter and the …
Students watch video clips from October Sky and Harry Potter and the Sorcerer's Stone to learn about projectile motion. They explore the relationships between displacement, velocity and acceleration and calculate simple projectile motion. The objective of this activity is to articulate concepts related to force and motion through direct immersive interaction based on the theme, The Science Behind Harry Potter. Students' interest is piqued by the use of popular culture in the classroom.
Students are introduced to the concept of projectile motion, of which they …
Students are introduced to the concept of projectile motion, of which they are often familiar from life experiences,such as playing sports such as basketball or baseball, even though they may not understand the physics involved. Students use tabletop-sized robots to build projectile throwers and measure motion using sensors. They compute distances and velocities using simple kinematic equations and confirm their results through measurements by hand. To apply the concept, students calculate the necessary speed of an object to reach a certain distance in a hypothetical scenaro: A group of hikers stranded at the bottom of a cliff need food, but rescuers cannot deliver it themselves, so they must devise a way to get the food to the hikers.
The resource "Projectile Motion" is included in the Physics Fundamentals topic of …
The resource "Projectile Motion" is included in the Physics Fundamentals topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.
Water transport through pipes, pressure losses, (pressure) network design and building, pump …
Water transport through pipes, pressure losses, (pressure) network design and building, pump selection, pumping stations, power supply, quantitative reliability, operation and maintenance.
This lesson focuses on the conservation of energy solely between gravitational potential …
This lesson focuses on the conservation of energy solely between gravitational potential energy and kinetic energy, moving students into the Research and Revise step. Students start out with a virtual laboratory, and then move into the notes and working of problems as a group. A few questions are given as homework. A dry lab focuses on the kinetic and potential energies found on a roller coaster concludes the lesson in the Test Your Mettle phase of the Legacy Cycle.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.