The resource "Linearity" is included in the "Electrical engineering" course from Khan …
The resource "Linearity" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.
The resource "Line of charge" is included in the "Electrical engineering" course …
The resource "Line of charge" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Electrostatics" topic area.
The resource "Loop block" is included in the "Electrical engineering" course from …
The resource "Loop block" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Lego robotics" topic area.
The resource "Loop current method" is included in the "Electrical engineering" course …
The resource "Loop current method" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.
This course is an introduction to the dynamics and vibrations of lumped-parameter …
This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems.
This is an advanced subject in computer modeling and CAD CAM fabrication, …
This is an advanced subject in computer modeling and CAD CAM fabrication, with a focus on building large-scale prototypes and digital mock-ups within a classroom setting. Prototypes and mock-ups are developed with the aid of outside designers, consultants, and fabricators. Field trips and in-depth relationships with building fabricators demonstrate new methods for building design. The class analyzes complex shapes, shape relationships, and curved surfaces fabrication at a macro scale leading to new architectural languages, based on methods of construction.
This class investigates cognitive science and technology as it is applied to …
This class investigates cognitive science and technology as it is applied to the industrial design process. The class introduces prototyping techniques and approaches for objective evaluation as part of the design process. Students practice evaluating products with mechanical and electronic aspects. Evaluation processes are applied to creating functioning smart product prototypes. This is a project oriented subject that draws upon engineering, aesthetic, and creative skills. It is geared toward students interested in creating physical products which encompass electronics and computers, aimed at including them in smart scenarios. Students in the class will present readings, learn prototyping skills, create a product prototype, and complete a publication style paper.
Students are given an engineering challenge: A nearby hospital has just installed …
Students are given an engineering challenge: A nearby hospital has just installed a new magnetic resonance imaging facility that has the capacity to make 3D images of the brain and other body parts by exposing patients to a strong magnetic field. The hospital wishes for its entire staff to have a clear understanding of the risks involved in working near a strong magnetic field and a basic understanding of why those risks occur. Your task is to develop a presentation or pamphlet explaining the risks, the physics behind those risks, and the safety precautions to be taken by all staff members. This 10-lesson/4-activity unit was designed to provide hands-on activities to teach end-of-year electricity and magnetism topics to a first-year accelerated or AP physics class. Students learn about and then apply the following science concepts to solve the challenge: magnetic force, magnetic moments and torque, the Biot-Savart law, Ampere's law and Faraday's law. This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn.
In this activity, students gain first-hand experience with the mechanical advantage of …
In this activity, students gain first-hand experience with the mechanical advantage of pulleys. Students are given the challenge of helping save a whale by moving it from an aquarium back to its natural habitat into the ocean. They set up different pulley systems, compare the theoretical and actual mechanical advantage of each and discuss their recommendations as a class.
Students are introduced to a unique fluid ferrofluids the shape of which …
Students are introduced to a unique fluid ferrofluids the shape of which can be influenced by magnetic fields. This activity supplements traditional magnetism activities and offers comparisons between large-scale materials and nanomaterials.Students are introduced to the concepts of magnetism, surfactants and nanotechnology by relating movie magic to practical science. Students observe ferrofluid properties as a stand-alone fluid and under an imposed magnetic field. They learn about the components of ferrofluids and their functionality as they create shapes using magnetically controlled ferrofluids and create their masterpieces.
Students watch video clips from the October Sky and Harry Potter and …
Students watch video clips from the October Sky and Harry Potter and the Sorcerer's Stone movies to see examples of projectile motion. Then they explore the relationships between displacement, velocity and acceleration, and calculate simple projectile motion. The objective of this activity is to articulate concepts related to force and motion through direct immersive interaction based on "The Science Behind Harry Potter" theme. Students' interest is piqued by the use of popular culture in the classroom.
In this activity, students reinforce their understanding of compound machines by building …
In this activity, students reinforce their understanding of compound machines by building a catapult. This compound machine consists of a lever and a wheel-and-axel. Catapults have been designed by engineers for a variety of purposes from lifting boulders into the air for warfare to human beings for entertainment; the projectiles in this activity are grapes for a magic act. Given the building materials, students design and build their catapult to launch a grape a certain distance.
Students visualize the magnetic field of a strong permanent magnet using a …
Students visualize the magnetic field of a strong permanent magnet using a compass. The lesson begins with an analogy to the effect of the Earth's magnetic field on a compass. Students see the connection that the compass simply responds to the Earth's magnetic field since it is the closest, strongest field, and thus the compass responds to the field of the permanent magnets, allowing them the ability to map the field of that magnet in the activity. This information will be important in designing a solution to the grand challenge in activity 4 of the unit.
This lesson introduces students to the effects of magnetic fields in matter …
This lesson introduces students to the effects of magnetic fields in matter addressing permanent magnets, diamagnetism, paramagnetism, ferromagnetism, and magnetization. First students must compare the magnetic field of a solenoid to the magnetic field of a permanent magnet. Students then learn the response of diamagnetic, paramagnetic, and ferromagnetic material to a magnetic field. Now aware of the mechanism causing a solid to respond to a field, students learn how to measure the response by looking at the net magnetic moment per unit volume of the material.
In this fun, engaging activity, students are introduced to a unique type …
In this fun, engaging activity, students are introduced to a unique type of fluid ferrofluids whose shape can be influenced by magnetic fields! Students act as materials engineers and create their own ferrofluids. They are challenged to make magnetic ink out of ferrofluids and test their creations to see if they work. Concurrently, they learn more about magnetism, surfactants and nanotechnology. As they observe fluid properties as a standalone-fluid and under an imposed magnetic field, they come to understand the components of ferrofluids and their functionality.
Students explore electromagnetism and engineering concepts using optimization techniques to design an …
Students explore electromagnetism and engineering concepts using optimization techniques to design an efficient magnetic launcher. Groups start by algebraically solving the equations of motion for the velocity at the time when a projectile leaves a launcher. Then they test three different launchers, in which the number of coils used is different, measuring the range and comparing the three designs. Based on these observations, students record similarities and differences and hypothesize on the underling physics. They are introduced to Faraday's law and Lenz's law to explain the physics behind the launcher. Students brainstorm how these principals might be applied to real-world engineering problems.
Students begin working on the grand challenge of the unit by thinking …
Students begin working on the grand challenge of the unit by thinking about the nature of metals and quick, cost-effective means of separating different metals, especially steel. They arrive at the idea, with the help of input from relevant sources, to use magnets, but first they must determine if the magnets can indeed isolate only the steel.
This lesson ties the preceding lessons together and brings students back to …
This lesson ties the preceding lessons together and brings students back to the grand challenge question on MRI safety. During this lesson, students focus on the logistics of magnetic resonance imaging as well as the MRI hardware. Students can then integrate this knowledge with their acquired knowledge on magnetic fields to solve the challenge question.
Students explore the basic magnetic properties of different substances, particularly aluminum and …
Students explore the basic magnetic properties of different substances, particularly aluminum and steel. There is a common misconception that magnets attract all metals, largely due to the ubiquity of steel in metal products. The activity provides students the chance to predict, whether or not a magnet will attract specific items and then test their predictions. Ultimately, students should arrive at the conclusion that iron (and nickel if available) is the only magnetic metal.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.