Updating search results...

Search Resources

1012 Results

View
Selected filters:
  • Physics
Make a Sticky-Note Fan with Arduino
Read the Fine Print
Educational Use
Rating
0.0 stars

Students control small electric motors with Arduino microcontrollers to make simple sticky-note spinning fans and then explore other variations of basic motor systems. Through this exercise, students create circuits that include transistors acting as switches. They alter and experiment with given basic motor code, learning about the Arduino analogWrite command and pulse width modulation (PWM). Students learn the motor system nuances that enable them to create their own motor-controlled projects. They are challenged to make their motor systems respond to temperature or light, to control speed with knob or soft potentiometers, and/or make their motors go in reverse (using a motor driver shield or an H-bridge). Electric motors are used extensively in industrial and consumer products and the fundamental principles that students learn can be applied to motors of all shapes and sizes.

Subject:
Computer Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Daniel Godrick
Date Added:
10/27/2017
Make and Control a Servo Arm with Your Computer
Read the Fine Print
Educational Use
Rating
0.0 stars

Computer-controlled servos enable industrial robots to manufacture everything from vehicles to smartphones. For this maker challenge, students control a simple servo arm by sending commands with their computers to Arduinos using the serial communication protocol. This exercise walks students through the (sometimes) unintuitive nuances of this protocol, so by the end they can directly control the servo position with the computer. Once students master the serial protocol, they are ready to build some suggested interactive projects using the computer or “cut the cord” and get started with wireless Bluetooth or XBee communication.

Subject:
Computer Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Daniel Godrick
Date Added:
02/28/2018
Making Sound-Reactive Clothing
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply sound-activated light-up EL wire to create personalized light-up clothing outfits. During the project, students become familiar with the components, code and logic to complete circuits and employ their imaginations to real-world applications of technology. Acting as if they are engineers, students are challenged to incorporate electroluminescent wire to regular clothing to make attention-getting safety clothing for joggers and cyclists. Luminescent EL wire stays cool, making it ideal to sew into wearable projects. They use the SparkFun sound detector and the EL sequencer circuit board to flash the EL wire to the rhythm of ambient sound, such as music, clapping, talking—or roadway traffic sounds! The combination of sensors, microcontrollers and EL wire enables a wide range of feedback and control options.

Subject:
Computer Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Jen Foxbot
Kent Kurashima
Rachel Sharpe
Sabina Schill
Date Added:
02/13/2018
Mass & Energy
Read the Fine Print
Educational Use
Rating
0.0 stars

Paul Andersen explains how the mechanical energy added or removed from a system results from work. For work to occur a force must act parallel to the displacement of the system. Since work and energy are equivalent the work-energy theorem allows of for calculating the work as the change in kinetic energy. A force-displacement graph can be used to calculate the work done on the system.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Bozeman Science
Date Added:
09/22/2016
Mass action
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

In the first part of this video, we derive the law of mass action from one example of a picture of molecular collisions. For this course, we use the "law of mass action" to refer to an idea that chemical reaction kinetic rates can be expressed using products of the abundances of reactants raised to exponents. Studying cooperativity and Hill functions in the second part of the video allows us to investigate a simple example of bistability in the third video segment.

Subject:
Physical Science
Physics
Material Type:
Lecture Notes
Provider:
Look At Physics
Provider Set:
A Mathematical Way to Think About Biology
Author:
David Liao
Date Added:
10/08/2012
Matching the Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about slope, determining slope, distance vs. time graphs through a motion-filled activity. Working in teams with calculators and CBL motion detectors, students attempt to match the provided graphs and equations with the output from the detector displayed on their calculators.

Subject:
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey McKelvey
Date Added:
09/18/2014
Mathematically Designing a Frictional Roller Coaster
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply high school-level differential calculus and physics to the design of two-dimensional roller coasters in which the friction force is considered, as explained in the associated lesson. In a challenge the mirrors real-world engineering, the designed roller coaster paths must be made from at least five differentiable functions that are put together such that the resulting piecewise curving path is differentiable at all points. Once designed mathematically, teams build and test small-sized prototype models of the exact designs using foam pipe wrap insulation as the roller coaster track channel with marbles as the ride carts.

Subject:
Algebra
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Miguel R. Ramirez
Date Added:
08/31/2017
Matter as a Particle
Read the Fine Print
Educational Use
Rating
0.0 stars

Paul Andersen explains how matter, like light, can be treated as both a particle and a wave. Louis de Broglie proposed that matter could act as a wave and described the wavelength of matter as a function of Planck's constant divided by the momentum of the particle.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Bozeman Science
Date Added:
09/22/2016
Matter as a Wave
Read the Fine Print
Educational Use
Rating
0.0 stars

Paul Andersen explains how matter can act as a wave at the nanoscale. Louis de Broglie showed that the wavelength of matter can be calculated using the momentum of an object and Planck's constant. The Davisson-Germer experiment showed that electrons showed interference and were therefore acting as waves.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Bozeman Science
Date Added:
09/22/2016
Maxwell's Demon
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Maxwell's Demon: A thought experiment that seems to defy the 2nd Law of Thermodynamics

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Author:
Khan Academy
Date Added:
09/22/2013
Maxwell's Equations: Crash Course Physics #37
Read the Fine Print
Educational Use
Rating
0.0 stars

The video resource "Maxwell's Equations: Crash Course Physics #37" is included in the "Media Literacy" course from the resources series of "Crash Course". Crash Course is a educational video series from John and Hank Green.

Subject:
Physical Science
Physics
Material Type:
Lesson
Date Added:
05/08/2018
May the Force Be With You: Thrust
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will study how propellers and jet turbines generate thrust. This lesson focuses on Isaac Newton's 3rd Law of Motion, which states that for every action there is an equal and opposite reaction.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
May the Magnetic Force be with You
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson begins with a demonstration of the deflection of an electron beam. Students then review their knowledge of the cross product and the right hand rule with sample problems. After which, students study the magnetic force on a charged particle as compared to the electric force. The following lecture material covers the motion of a charged particle in a magnetic field with respect to the direction of the field. Finally, students apply these concepts to understand the magnetic force on a current carrying wire. Its associated activity allows students to further explore the force on a current carrying wire.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Means, Modes and Medians
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experience data collection, analysis and inquiry in this LEGO® MINDSTORMS® NXT -based activity. They measure the position of an oscillating platform using a ultrasonic sensor and perform statistical analysis to determine the mean, mode, median, percent difference and percent error for the collected data.

Subject:
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Irina Igel
Noam Pillischer
Ronald Poveda
Date Added:
09/18/2014
Measurements for Water
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course, Measurements for Water is in Dutch, but the following parts are in English:Lectures: Waterbalans Water balance)ReadingsDit vak gaat in op het hoe te doen van typische metingen op het vakgebied van gezondheidstechniek (waterkwaliteit), hydrologie, waterbeheer, waterbouw en vloeistofmechanica (waterkwantiteit).Onderdelen hierin zijn: het herkennen van de relevante parameters, leren over meetmethodes, meetapparatuur, nauwkeurigheid, opstellen van een meetplan, veiligheid, het zelf doen van metingen (laboratorium e/o in het veld) en bewerken en verwerken van gegevens.In een workshop wordt er geleerd met beschikbare electronica componenten een eigen meetsensor te bouwen.Leerdoelen- In staat zijn aan te geven welke parameters van belang zijn bij een bepaald proces- In staat zijn aan te geven hoe de parameters gemeten kunnen worden- Geschikte meetapparatuur kunnen kiezen- Een meetplan kunnen maken (uitvoering, tijd, duur, kosten, veiligheid)- Basis principes electronica in de meettechniek begrijpen en kunnen toepassen

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
A.M.J. Coenders
Date Added:
01/12/2021
Measuring Distance with Sound Waves
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about sound waves and use them to measure distances between objects. They explore how engineers incorporate ultrasound waves into medical sonogram devices and ocean sonar equipment. Students learn about properties, sources and applications of three types of sound waves, known as the infra-, audible- and ultra-sound frequency ranges. They use ultrasound waves to measure distances and understand how ultrasonic sensors are engineered.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Irina Igel
Date Added:
09/18/2014
Measuring Lava Flow
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how volume, viscosity and slope are factors that affect the surface area that lava covers. Using clear transparency grids and liquid soap, students conduct experiments, make measurements and collect data. They also brainstorm possible solutions to lava flow problems as if they were geochemical engineers, and come to understand how the properties of lava are applicable to other liquids.

Subject:
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brittany Enzmann
Date Added:
09/18/2014
Measuring Surface Tension
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe capillary action in glass tubes of varying sizes. Then they use the capillary action to calculate the surface tension in each tube. They find the average surface tensions and calculate the statistical errors.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Measuring Viscosity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students calculate the viscosity of various household fluids by measuring the amount of time it takes marble or steel balls to fall given distances through the liquids. They experience what viscosity means, and also practice using algebra and unit conversions.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael A. Soltys
Date Added:
09/18/2014