Updating search results...

Search Resources

31 Results

View
Selected filters:
  • prototype
Artificial Heart Design Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a hypothetical scenario in which they are biomedical engineers asked to design artificial hearts. Using the engineering design process as a guide, the challenge is established and students brainstorm to list everything they might need to know about the heart in order to create a complete mechanical replacement (size, how it functions, path of blood etc.). They conduct research to learn the information and organize it through various activities. They research artificial heart models that have already been used and rate their performance in clinical trials. Finally, they analyze the data to identify the artificial heart features and properties they think work best and document their findings in essay form.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Angela D. Kolonich
Date Added:
09/18/2014
Bone Transplants—No Donors Necessary!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the bone structure of a turkey femur and then create their own prototype versions as if they are biomedical engineers designing bone transplants for a bird. The challenge is to mimic the size, shape, structure, mass and density of the real bone. Students begin by watching a TED Talk about printing a human kidney and reading a news article about 3D printing a replacement bone for an eagle. Then teams gather data—using calipers to get the exact turkey femur measurements—and determine the bone’s mass and density. They make to-scale sketches of the bone and then use modeling clay, plastic drinking straws and pipe cleaners to create 3D prototypes of the bone. Next, groups each cut and measure a turkey femur cross-section, which they draw in CAD software and then print on a 3D printer. Students reflect on the design/build process and the challenges encountered when making realistic bone replacements. A pre/post-quiz, worksheet and rubric are included. If no 3D printer, shorten the activity by just making the hand-generated replicate bones.

Subject:
Agriculture & Natural Science
Biology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
David Breitbach
Deanna Grandalen
Date Added:
06/23/2017
Design Step 1: Identify the Need
Read the Fine Print
Educational Use
Rating
0.0 stars

Students practice the initial steps involved in an engineering design challenge. They begin by reviewing the steps of the engineering design loop and discussing the client need for the project. Next, they identify a relevant context, define the problem within their design teams, and examine the project's requirements and constraints. (Note: Conduct this activity in the context of a design project that students are working on, which could be a challenge determined by the teacher, brainstormed with the class, or the example project challenge provided [to design a prosthetic arm that can perform a mechanical function].)

Subject:
Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design Step 5: Construct a Prototype
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the manufacturing phase of the engineering design process. They start by building prototypes, which is a special type of model used to test new design ideas. Students gain experience using a variety of simple building materials, such as foam core board, balsa wood, cardstock and hot glue. They present their prototypes to the class for user testing and create prototype iterations based on feedback. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 5 in a series of six that guide students through the engineering design loop.)

Subject:
Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design a Carrying Device for People Using Crutches
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given a biomedical engineering challenge, which they solve while following the steps of the engineering design process. In a design lab environment, student groups design, create and test prototype devices that help people using crutches carry things, such as books and school supplies. The assistive devices must meet a list of constraints, including a device weight limit and minimum load capacity. Students use various hand and power tools to fabricate the devices. They test the practicality of their designs by loading them with objects and then using the modified crutches in the school hallways and classrooms.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristen Billiar
Terri Camesano
Thomas Oliva
Date Added:
09/18/2014
Designing a Robotic Surgical Device
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams create laparoscopic surgical robots designed to reduce the invasiveness of diagnosing endometriosis and investigate how the disease forms and spreads. Using a synthetic abdominal cavity simulator, students test and iterate their remotely controlled, camera-toting prototype devices, which must fit through small incisions, inspect the organs and tissue for disease, obtain biopsies, and monitor via ongoing wireless image-taking. Note: This activity is the core design project for a semester-long, three-credit high school engineering course. Refer to the associated curricular unit for preparatory lessons and activities.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry
Brandi N. Briggs
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
Designing a Spectroscopy Mission
Read the Fine Print
Educational Use
Rating
0.0 stars

Students find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, student teams design and build their own spectrographs, researching and designing a ground- or space-based mission using their creation. At project end, teams present their findings to the class, as if they were making an engineering conference presentation. Student must have completed the associated Building a Fancy Spectrograph activity before attempting this activity.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Does My Model Valve Stack up to the Real Thing?
Read the Fine Print
Educational Use
Rating
0.0 stars

Following the steps of the iterative engineering design process, student teams use what they learned in the previous lessons and activity in this unit to research and choose materials for their model heart valves and test those materials to compare their properties to known properties of real heart valve tissues. Once testing is complete, they choose final materials and design and construct prototype valve models, then test them and evaluate their data. Based on their evaluations, students consider how they might redesign their models for improvement and then change some aspect of their models and retest aiming to design optimal heart valve models as solutions to the unit's overarching design challenge. They conclude by presenting for client review, in both verbal and written portfolio/report formats, summaries and descriptions of their final products with supporting data.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Energy Storage Derby and Proposal
Read the Fine Print
Educational Use
Rating
0.0 stars

In Activity 5, as part of the Going Public step, students demonstrate their knowledge of how potential energy may be transferred into kinetic energy. Students design, build and test vehicle prototypes that transfer various types of potential energy into motion.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
Date Added:
09/18/2014
Engineering Your Own Spectrograph
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use simple materials to design an open spectrograph so they can calculate the angle light is bent when it passes through a holographic diffraction grating. A holographic diffraction grating acts like a prism, showing the visual components of light. After finding the desired angles, students use what they have learned to design their own spectrograph enclosure.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Engineers Love Pizza, Too!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this service-learning engineering project, students follow the steps of the engineering design process to design an assistive eating device for a client. More specifically, they design a prototype device to help a young girl who has a medical condition that restricts the motion of her joints. Her wish is to eat her favorite food, pizza, without getting her nose wet. Students learn about arthrogryposis and how it affects the human body as they act as engineers to find a solution to this open-ended design challenge and build a working prototype. This project works even better if you arrange for a client in your own community.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi Briggs
Eszter Horanyi
Jonathan MacNeil
M. Travis O'Hair
Malinda Zarske
Stephanie Rivale
Date Added:
09/18/2014
Exploiting Polarization: Designing More Effective Sunglasses
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply what they know about light polarization and attenuation (learned in the associated lesson) to design, build, test, refine and then advertise their prototypes for more effective sunglasses. Presented as a hypothetical design scenario, students act as engineers who are challenged to create improved sunglasses that reduce glare and lower light intensity while increasing eye protection from UVA and UVB radiation compared to an existing model of sunglasses—and make them as inexpensive as possible. They use a light meter to measure and compare light intensities through the commercial sunglasses and their prototype lenses. They consider the project requirements and constraints in their designs. They brainstorm and evaluate possible design ideas. They keep track of materials costs. They create and present advertisements to the class that promote the sunglasses benefits, using collected data to justify their claims. A grading rubric and reflection handout are provided.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Adam Alster
Drew Kim
Quan Tran
Date Added:
05/30/2018
Floppy Heart Valves
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with an engineering challenge that asks them to develop a material and model that can be used to test the properties of aortic valves without using real specimens. Developing material that is similar to human heart valves makes testing easier for biomedical engineers because they can test new devices or ideas on the model valve instead of real heart valves, which can be difficult to obtain for research. To meet the challenge, students are presented with a variety of background information, are asked to research the topic to learn more specific information pertaining to the challenge, and design and build a (prototype) product. After students test their products and make modifications as needed, they convey background and product information in the form of portfolios and presentations to the potential buyer.

Subject:
Engineering
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Flying T-Shirts
Read the Fine Print
Educational Use
Rating
0.0 stars

During this engineering design/build project, students investigate many different solutions to a problem. Their design challenge is to find a way to get school t-shirts up into the stands during home sporting events. They follow the steps of the engineering design process to design and build a usable model, all while keeping costs under budget.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi Jackson
Denise W. Carlson
Jonathan MacNeil
Scott Duckworth
Stephanie Rivale
Date Added:
09/18/2014
Geometry Solutions: Design and Play Mini-Golf
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about geometric relationships by solving real mini putt examples on paper and then using putters and golf balls to experiment with the teacher’s pre-made mini put hole(s) framed by 2 x 4s, comparing their calculated (theoretical) results to real-world results. To “solve the holes,” they find the reflections of angles and then solve for those angles. They do this for 1-, 2- and 3-banked hole-in-one shots. Next, students apply their newly learned skills to design, solve and build their own mini putt holes, also made of 2 x 4s and steel corners.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Aaron Lamplugh
Andi Vicksman
Devin Rourke
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
03/01/2017
Inquiry and Engineering: Gliders
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams design, build and test small-sized gliders to maximize flight distance and an aerodynamic ratio, applying their knowledge of fluid dynamics to its role in flight. Students experience the entire engineering design process, from brainstorming to CAD (or by hand) drafting, including researching (physics of aerodynamics and glider components that take advantage of that science), creating materials lists, constructing, testing and evaluating—all within constraints (works with a launcher, budget limitation, maximizing flight distance to mass ratio), and concluding with a summary final report. Numerous handouts and rubrics are provided.

Subject:
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Melanie Finn-Scofield
Date Added:
01/01/2015
Into Space!
Read the Fine Print
Educational Use
Rating
0.0 stars

While building and testing model rockets fueled by antacid tablets, students are introduced to the basic physics concepts on how rockets work. Students revise and improve their initial designs. Note: This activity is similar to the elementary-level film canister rockets activity, but adapted for middle school students.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Janet Yowell
Jeff White
Jessica Butterfield
Jessica Todd
Karen King
Sam Semakula
Date Added:
10/14/2015
Intraocular Pressure Sensor Design Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Acting as if they are biomedical engineers, students design and print 3D prototypes of pressure sensors that measure the pressure of the eyes of people diagnosed with glaucoma. After completing the tasks within the associated lesson, students conduct research on pressure gauges, apply their understanding of radio-frequency identification (RFID) technology and its components, iterate their designs to make improvements, and use 3D software to design and print 3D prototypes. After successful 3D printing, teams present their models to their peers. If a 3D printer is not available, use alternate fabrication materials such as modeling clay, or end the activity once the designs are complete.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janelle Orange
Date Added:
10/14/2015
Mathematically Designing a Frictional Roller Coaster
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply high school-level differential calculus and physics to the design of two-dimensional roller coasters in which the friction force is considered, as explained in the associated lesson. In a challenge the mirrors real-world engineering, the designed roller coaster paths must be made from at least five differentiable functions that are put together such that the resulting piecewise curving path is differentiable at all points. Once designed mathematically, teams build and test small-sized prototype models of the exact designs using foam pipe wrap insulation as the roller coaster track channel with marbles as the ride carts.

Subject:
Algebra
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Miguel R. Ramirez
Date Added:
08/31/2017
Protect Your Body, Filter Your Water!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experience the steps of the engineering design process as they design solutions for a real-world problem that could affect their health. After a quick review of the treatment processes that municipal water goes through before it comes from the tap, they learn about the still-present measurable contamination of drinking water due to anthropogenic (human-made) chemicals. Substances such as prescription medication, pesticides and hormones are detected in the drinking water supplies of American and European metropolitan cities. Using chlorine as a proxy for estrogen and other drugs found in water, student groups design and test prototype devices that remove the contamination as efficiently and effectively as possible. They use plastic tubing and assorted materials such as activated carbon, cotton balls, felt and cloth to create filters with the capability to regulate water flow to optimize the cleaning effect. They use water quality test strips to assess their success and redesign for improvement. They conclude by writing comprehensive summary design reports.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kristen Billiar
Terri Camesano
Timothy S. Vaillancourt
Date Added:
10/14/2015