Updating search results...

Search Resources

1684 Results

View
Selected filters:
  • Engineering
16.422 Human Supervisory Control of Automated Systems, Spring 2005
Rating
0.0 stars

Human Supervisory Control of Automated Systems discusses elements of the interactions between humans and machines. These elements include: assignment of roles and authority; tradeoffs between human control and human monitoring; and human intervention in automatic processes. Further topics comprise: performance, optimization and social implications of the system; enhanced human interfaces; decision aiding; and automated alterting systems. Topics refer to applications in aerospace, industrial and transportation systems.

Subject:
Computer engineering
Aerospace engineering
Automation
Electrical engineering
Date Added:
09/01/2016
3D Printing, Computer Aided Design (CAD) and G-Code Basics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how 3D printing, also known as additive manufacturing, is revolutionizing the manufacturing process. First, students learn what considerations to make in the engineering design process to print an object with quality and to scale. Students learn the basic principles of how a computer-aided design (CAD) model is converted to a series of data points then turned into a program that operates the 3D printer. The activity takes students through a step-by-step process on how a computer can control a manufacturing process through defined data points. Within this activity, students also learn how to program using basic G-code to create a wireframe 3D shapes that can be read by a 3D printer or computer numerical control (CNC) machine.

Subject:
Computer Science
Engineering
Geometry
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Matthew Jourden
Date Added:
05/04/2019
3rd graders build robots at Santa Rita Elementary School
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "3rd graders build robots at Santa Rita Elementary School" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Home-made robots" topic area.

Subject:
Electrical engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
09/22/2013
5 volt power distribution board
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "5 volt power distribution board" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Home-made robots" topic area.

Subject:
Electrical engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
09/22/2013
6th graders learn to build a Spider robot
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "6th graders learn to build a Spider robot" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Home-made robots" topic area.

Subject:
Electrical engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
09/22/2013
ABILITY - Visualizing the Unimaginable - TU Delft OCW
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students and professionals in science, design and technology have to develop and communicate concepts that are often difficult to comprehend for the public, their peers and even themselves.

IMAGE | ABILITY – Visualizing the Unimaginable, will help you enhance your communication and interpersonal skills and provide insight, tips and tricks to make such complex and seemingly unimaginable concepts and ideas imaginable.

After finishing this course you will be more skilled in finding the right visual language to convey your ideas, thoughts and vision. You will be able to illustrate units and quantities, concepts and themes and you will know how to unravel complexity by using diagrams and schemes.

Subject:
Architectural engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. M.C. Stellingwerff
Date Added:
01/12/2021
AC Drive Controllers
Rating
0.0 stars

The resource "AC Drive Controllers" is included in the Motors & Drives topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Mechanical engineering
Date Added:
09/30/2015
AC Motor Basics
Rating
0.0 stars

The resource "AC Motor Basics" is included in the Motors & Drives topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Mechanical engineering
Date Added:
09/30/2015
AC analysis intro 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "AC analysis intro 1" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.

Subject:
Electrical engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
09/22/2013
AC analysis intro 2
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "AC analysis intro 2" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.

Subject:
Electrical engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
09/22/2013
AC analysis superposition
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "AC analysis superposition" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.

Subject:
Electrical engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
09/22/2013
AM I on the Radio?
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups create working radios by soldering circuit components supplied from AM radio kits. By carrying out this activity in conjunction with its associated lesson concerning circuits and how AM radios work, students are able to identify each circuit component they are soldering, as well as how their placement causes the radio to work. Besides reinforcing lesson concepts, students also learn how to solder, which is an activity that many engineers perform regularly giving students a chance to be able to engage in a real-life engineering activity.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandon Jones
Emily Spataro
Lara Oliver
Lisa Burton
Date Added:
09/18/2014
Abdominal Cavity and Laparoscopic Surgery
Read the Fine Print
Educational Use
Rating
0.0 stars

For students interested in studying biomechanical engineering, especially in the field of surgery, this lesson serves as an anatomy and physiology primer of the abdominopelvic cavity. Students are introduced to the abdominopelvic cavity—a region of the body that is the focus of laparoscopic surgery—as well as the benefits and drawbacks of laparoscopic surgery. Understanding the abdominopelvic environment and laparoscopic surgery is critical for biomechanical engineers who design laparoscopic surgical tools.

Subject:
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry
Brandi N. Briggs
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
About Solar Reference Guide for Students
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource, "About Solar Reference Guide for Students" included in "Lesson 08 Power Resources" is a part of "Unit 05 Green Sustainable Facility Design" included in Energy & Sustainability ES - Course 3

Subject:
Sustainable agriculture
Environmental technology
Environmental sciences
Material Type:
Activity/Lab
Provider:
Wholesale Solar
Date Added:
03/17/2015
Above-Ground Storage Tank Design Project
Read the Fine Print
Educational Use
Rating
0.0 stars

At this point in the unit, students have learned about Pascal's law, Archimedes' principle, Bernoulli's principle, and why above-ground storage tanks are of major concern in the Houston Ship Channel and other coastal areas. In this culminating activity, student groups act as engineering design teams to derive equations to determine the stability of specific above-ground storage tank scenarios with given tank specifications and liquid contents. With their floatation analyses completed and the stability determined, students analyze the tank stability in specific storm conditions. Then, teams are challenged to come up with improved storage tank designs to make them less vulnerable to uplift, displacement and buckling in storm conditions. Teams present their analyses and design ideas in short class presentations.

Subject:
Engineering
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Above-Ground Storage Tanks in the Houston Ship Channel
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are provided with an introduction to above-ground storage tanks, specifically how and why they are used in the Houston Ship Channel. The introduction includes many photographic examples of petrochemical tank failures during major storms and describes the consequences in environmental pollution and costs to disrupted businesses and lives, as well as the lack of safety codes and provisions to better secure the tanks in coastal regions regularly visited by hurricanes. Students learn how the concepts of Archimedes' principle and Pascal's law act out in the form of the uplifting and buckling seen in the damaged and destroyed tanks, which sets the stage for the real-world engineering challenge presented in the associated activity to design new and/or improved storage tanks that can survive storm conditions.

Subject:
Design
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Accelerometer: Centripetal Acceleration
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work as physicists to understand centripetal acceleration concepts. They also learn about a good robot design and the accelerometer sensor. They also learn about the relationship between centripetal acceleration and centripetal force governed by the radius between the motor and accelerometer and the amount of mass at the end of the robot's arm. Students graph and analyze data collected from an accelerometer, and learn to design robots with proper weight distribution across the robot for their robotic arms. Upon using a data logging program, they view their own data collected during the activity. By activity end , students understand how a change in radius or mass can affect the data obtained from the accelerometer through the plots generated from the data logging program. More specifically, students learn about the accuracy and precision of the accelerometer measurements from numerous trials.

Subject:
Engineering
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carlo Yuvienco
Jennifer S. Haghpanah
Date Added:
09/18/2014
Acoustic Remote Sensing and Sea Floor Mapping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course treats the following topics: - Relevant physical oceanography - Elements of marine geology (seafloor topography, acoustical properties of sediments and rocks) - Underwater sound propagation (ray acoustics, ocean noise) - Interaction of sound with the seafloor (reflection, scattering) - Principles of sonar (beamforming) - Underwater acoustic mapping systems (single beam echo sounding, multi-beam echo sounding, sidescan sonar) - Data analysis (refraction corrections, digital terrain modelling) - Applications (hydrographic survey planning and navigation, coastal engineering) - Current and future developments.

Subject:
Engineering
Oceanography
Material Type:
Homework/Assignment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
dr.ir. M. Snellen
Date Added:
02/09/2016
Action-Reaction! Rocket
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct rockets from balloons propelled along a guide string. They use this model to learn about Newton's three laws of motion, examining the effect of different forces on the motion of the rocket.

Subject:
Engineering
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise W. Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Active and Passive Transport: Red Rover Send Particles Over
Read the Fine Print
Educational Use
Rating
0.0 stars

Students compare and contrast passive and active transport by playing a game to model this phenomenon. Movement through cell membranes is also modeled, as well as the structure and movement typical of the fluid mosaic model of the cell membrane. Concentration gradient, sizes, shapes and polarity of molecules determine the method of movement through cell membranes. This activity is associated with the Test your Mettle phase of the legacy cycle.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Melinda M. Higgins
Date Added:
09/18/2014
Adaptations for Bird Flight – Inspiration for Aeronautical Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity first asks the students to study the patterns of bird flight and understand that four main forces affect the flight abilities of a bird. They will study the shape, feather structure, and resulting differences in the pattern of flight. They will then look at several articles that feature newly designed planes and the birds that they are modeled after. The final component of this activity is to watch the Nature documentary, "Raptor Force" which chronicles the flight patterns of birds, how researchers study these animals, and what interests our military and aeronautical engineers about these natural adaptations. This activity serves as an extension to the biomimetics lesson. Although students will not be using this information in the design process for their desert resort, it provides interesting information pertaining to the current use of biomimetics in the field of aviation. Students may extend their design process by using this information to create a means of transportation to and from the resort if they chose to.

Subject:
Biology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Add Spout's tail
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "Add Spout's tail" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Home-made robots" topic area.

Subject:
Electrical engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Sal Khan
Date Added:
04/14/2016
Advanced Design and Optimization of Composite Structures I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces the basic components of an airframe structure and discusses their use and limitations. The realities of composite design such as the effect of material scatter, environmental knockdowns, and damage knockdowns are discussed and guidelines accounting for these effects and leading to robust designs are presented.

The resulting design constraints and predictive tools are applied to real-life design problems in composite structures. A brief revision of lamination theory and failure criteria leads into the development of analytical solutions for typical failure modes for monolithic skins (layup strength, buckling under combined loads and for a variety of boundary conditions) and stiffeners (strength, column buckling under a variety of loads and boundary conditions, local buckling or crippling for one-edge and no-edge-free conditions). These are then combined into stiffened composite structures where additional failure modes such as skin-stiffener separation are considered. Analogous treatment of sandwich skins examines buckling, wrinkling, crimping, intra-cellular buckling failure modes. Once the basic analysis and design techniques have been presented, typical designs (e.g. flange layup, stiffness, taper requirements) are presented and a series of design guidelines (stiffness mismatch minimization, symmetric and balanced layups, 10% rule, etc.) addressing layup and geometry are discussed. On the metal side, the corresponding design practices and analysis methods are presented for the more important failure modes (buckling, crippling) and comparisons to composite designs are made. A design problem is given in the end as an application of the material in this Part of the course.

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. Christos Kassapoglou
Dr.ir. Mostafa Abdalla
Date Added:
01/12/2021
Advanced Device Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course will focus for a large part on MOSFET and CMOS, but also on heterojunction BJT, and photonic devices.First non-ideal characteristics of MOSFETs will be discussed, like channel-length modulation and short-channel effects. We will also pay attention to threshold voltage modification by varying the dopant concentration. Further, MOS scaling will be discussed. A combination of an n-channel and p-channel MOSFET is used for CMOS devices that form the basis for current digital technology. The operation of a CMOS inverter will be explained. We will explain in more detail how the transfer characteristics relate to the CMOS design.

Subject:
Electrical engineering
Physics
Material Type:
Activity/Lab
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
R.A.C.M.M. van Swaaij
Date Added:
02/20/2016
Advanced Structural Analysis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is designed to introduce students who wish to specialize in stress analysis of thin-walled structures to more advanced topics such as the analysis of statically indeterminate structures, warping, constraint stresses, shear diffusion, and elements of plate bending.

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. Mostafa Abdalla
Date Added:
02/07/2014
Advanced Transport Phenomena
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How can you reduce the energy loss of your home? What is the underlying science of energy loss in pipes? Which heat and mass transfer problems do we have to tackle to make consumer products?

In this engineering course, you will learn about the engineering principles that play an important role in all of these and more phenomena. You will learn about microbalances, radiation, convection, diffusion and more and their applications in everyday life.

This advanced course is for engineers who want to refresh their knowledge, engineering students who are eager to learn more about heat/mass transport and for all who have fun in explaining the science of phenomena in nature.

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Peter Hamersma
Robbert Mudde
Date Added:
01/12/2021
The Advantage of Machines
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn about work as defined by physical science and see that work is made easier through the use of simple machines. Already encountering simple machines everyday, students will be alerted to their widespread uses in everyday life. This lesson serves as the starting point for the Simple Machines Unit.

Subject:
Engineering
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Michael Bendewald
Date Added:
09/18/2014
Agent Based Modeling of Complex Adaptive Systems (Basic)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Our human society consists of many intertwined Large Scale Socio-Technical Systems (LSSTS), such as infrastructures, industrial networks, the financial systems etc. Environmental pressures created by these systems on Earth‰ŰŞs carrying capacity are leading to exhaustion of natural resources, loss of habitats and biodiversity, and are causing a resource and climate crisis. To avoid this sustainability crisis, we urgently need to transform our production and consumption patterns. Given that we, as inhabitants of this planet, are part of a complex and integrated global system, where and how should we begin this transformation? And how can we also ensure that our transformation efforts will lead to a sustainable world? LSSTS and the ecosystems that they are embedded in are known to be Complex Adaptive Systems (CAS). According to John Holland CAS are "...a dynamic network of many agents (which may represent cells, species, individuals, firms, nations) acting in parallel, constantly acting and reacting to what the other agents are doing. The control of a CAS tends to be highly dispersed and decentralized. If there is to be any coherent behavior in the system, it will have to to arise from competition and cooperation among the agents themselves. The overall behavior of the system is the result of a huge number of decisions made every moment" by many individual agents. Understanding Complex Adaptive Systems requires tools that themselves are complex to create and understand. Shalizi defines Agent Based Modeling as "An agent is a persistent thing which has some state we find worth representing, and which interacts with other agents, mutually modifying each other‰ŰŞs states. The components of an agent-based model are a collection of agents and their states, the rules governing the interactions of the agents and the environment within which they live." This course will explore the theory of CAS and their main properties. It will also teach you how to work with Agent Based Models in order to model and understand CAS.

Subject:
Engineering
Environmental sciences
Material Type:
Assessment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. Ir. I. Nikolic; Dr.ir. I. Bouwmans
Date Added:
03/03/2016
Aging Heart Valves
Read the Fine Print
Educational Use
Rating
0.0 stars

In this unit, students learn about the form and function of the human heart through lecture, research and dissection. Following the steps of the Legacy Cycle, students brainstorm, research, design and present viable solutions to various heart conditions as presented through a unit challenge. Additionally, students study how heart valves work and investigate how faulty valves can be replaced with new ones through advancements in engineering and technology. This unit demonstrates to students how and why the heart is such a powerful organ in our bodies

Subject:
Education
Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Date Added:
09/18/2014
Air Compressors
Rating
0.0 stars

The resource "Air Compressors" is included in the Fluid Power Fundamentals topic of the EICC Engineering Techology Simulations resource series. This series is segment of a Department of Labor grant awarded to the Eastern Iowa Community Colleges (EICC) of Clinton, Muscatine, and Scott.

Subject:
Mechanical engineering
Date Added:
09/30/2015
Algoritmiek
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course treats various methods to design and analyze datastructures and algorithms for a wide range of problems. The most important new datastructure treated is the graph, and the general methods introduced are: greedy algorithms, divide and conquer, dynamic programming and network flow algorithms. These general methods are explained by a number of concrete examples, such as simple scheduling algorithms, Dijkstra, Ford-Fulkerson, minimum spanning tree, closest-pair-of-points, knapsack, and Bellman-Ford. Throughout this course there is significant attention to proving the correctness of the discussed algorithms. All material for this course is in English. The recorded lectures, however, are in Dutch.

Subject:
Engineering
Material Type:
Homework/Assignment
Lecture
Lecture Notes
Reading
Teaching/Learning Strategy
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
M. de Weerdt
Date Added:
01/12/2021
The Amazing Buckyball: How to Track Nanomaterials in the Human Body
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how nanoparticles can be creatively used for medical diagnostic purposes. They learn about buckminsterfullerenes, more commonly known as buckyballs, and about the potential for these complex carbon molecules to deliver drugs and other treatments into the human body. They brainstorm methods to track buckyballs in the body, then build a buckyball from pipe cleaners with a fluorescent tag to model how nanoparticles might be labeled and detected for use in a living organism. As an extension, students research and select appropriate radioisotopes for different medical applications.

Subject:
Biology
Engineering
Chemistry
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Diana Gano
Donna Tate
Date Added:
09/07/2018
Ampere's Law
Read the Fine Print
Educational Use
Rating
0.0 stars

The lesson begins with a demonstration introducing students to the force between two current carrying loops, comparing the attraction and repulsion between the loops to that between two magnets. After formal lecture on Ampere's law, students begin to use the concepts to calculate the magnetic field around a loop. This is applied to determine the magnetic field of a toroid, imagining a toroid as a looped solenoid.

Subject:
Engineering
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Analog Integrated Circuit Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

An introductory course in analog circuit synthesis for microelectronic designers. Topics include: Review of analog design basics; linear and non-linear analog building blocks: harmonic oscillators, (static and dynamic) translinear circuits, wideband amplifiers, filters; physical layout for robust analog circuits; design of voltage sources ranging from simple voltage dividers to high-performance bandgaps, and current source implementations from a single resistor to high-quality references based on negative-feedback structures.

Subject:
Electrical engineering
Material Type:
Assessment
Full Course
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Date Added:
02/19/2016
Analyzing a resistor circuit with two batteries
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The resource "Analyzing a resistor circuit with two batteries" is included in the "Electrical engineering" course from Khan Academy. This resource is one of the sub-topics in the "Circuit analysis" topic area.

Subject:
Electrical engineering
Material Type:
Lesson
Provider:
Khan Academy
Author:
Monterey Institute for Technology and Education
Sal Khan
Date Added:
09/22/2013
Android Acceleration
Read the Fine Print
Educational Use
Rating
0.0 stars

Students prepare for the associated activity in which they investigate acceleration by collecting acceleration vs. time data using the accelerometer of a sliding Android device. Based on the experimental set-up for the activity, students form hypotheses about the acceleration of the device. Students will investigate how the force on the device changes according to Newton's Second Law. Different types of acceleration, including average, instantaneous and constant acceleration, are introduced. Acceleration and force is described mathematically and in terms of processes and applications.

Subject:
Engineering
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Scott Burns
Date Added:
09/18/2014
Android Acceleration Application
Read the Fine Print
Educational Use
Rating
0.0 stars

In the first of two sequential lessons, students create mobile apps that collect data from an Android device's accelerometer and then store that data to a database. This lesson provides practice with MIT's App Inventor software and culminates with students writing their own apps for measuring acceleration. In the second lesson, students are given an app for an Android device, which measures acceleration. They investigate acceleration by collecting acceleration vs. time data using the accelerometer of a sliding Android device. Then they use the data to create velocity vs. time graphs and approximate the maximum velocity of the device.

Subject:
Computer Science
Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Scott Burns
Date Added:
09/18/2014
Android App Development
Read the Fine Print
Educational Use
Rating
0.0 stars

Students develop an app for an Android device that utilizes its built-in internal sensors, specifically the accelerometer. The goal of this activity is to teach programming design and skills using MIT's App Inventor software (free to download from the Internet) as the vehicle for learning. The activity should be exciting for students who are interested in applying what they learn to writing other applications for Android devices. Students learn the steps of the engineering design process as they identify the problem, develop solutions, select and implement a possible solution, test the solution and redesign, as needed, to accomplish the design requirements.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Scott Burns
Date Added:
09/18/2014
Android Pendulums
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the motion of a simple pendulum through direct observation and data collection using Android® devices. First, student groups create pendulums that hang from the classroom ceiling, using Android smartphones or tablets as the bobs, taking advantage of their built-in accelerometers. With the Android devices loaded with the (provided) AccelDataCapture app, groups explore the periodic motion of the pendulums, changing variables (amplitude, mass, length) to see what happens, by visual observation and via the app-generated graphs. Then teams conduct formal experiments to alter one variable while keeping all other parameters constant, performing numerous trials, identifying independent/dependent variables, collecting data and using the simple pendulum equation. Through these experiments, students investigate how pendulums move and the changing forces they experience, better understanding the relationship between a pendulum's motion and its amplitude, length and mass. They analyze the data, either on paper or by importing into a spreadsheet application. As an extension, students may also develop their own algorithms in a provided App Inventor framework in order to automatically note the time of each period.

Subject:
Engineering
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Doug Bertelsen
Date Added:
09/18/2014
Angular Velocity: Sweet Wheels
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze the relationship between wheel radius, linear velocity and angular velocity by using LEGO(TM) MINDSTORMS(TM) NXT robots. Given various robots with different wheel sizes and fixed motor speeds, they predict which has the fastest linear velocity. Then student teams collect and graph data to analyze the relationships between wheel size and linear velocity and find the angular velocity of the robot given its motor speed. Students explore other ways to increase linear velocity by changing motor speeds, and discuss and evaluate the optimal wheel size and desired linear velocities on vehicles.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Muldoon
Jigar Jadav
Kelly Brandon
Date Added:
10/14/2015